
1

© Tristan Aubrey-Jones 2007.

Behaviour Based Malware Detection

Tristan Aubrey-Jones

School of Electronics and Computer Science, University of Southampton, UK

taj105@ecs.soton.ac.uk

Abstract

This article looks at the future of antivirus

technology in IT security, discussing some of the latest

malware threats and counter developments. We

specifically examine key developments in proactive

malware detection based on real-time behavioural

analysis, to combat 0-day threats.

1. Introduction

“Malware” is the generic term for malicious computer

programs like Viruses, Worms and Trojans written to

make illegitimate use of a computer system, purposed

by those without the right to do so. Such programs use

a variety of different techniques to access and exploit

victim systems but whatever these may be, it is a vital

role of IT security to frustrate them. The primary

countermeasure against this type of threat is antivirus

software; software that seeks to detect malicious code

and disable it.

2. The Battle Thus Far

The predominate method of virus detection searches

files for “signatures”, binary patterns that occur in the

virus, to see if they are infected. Signatures are created

manually by antivirus companies as they analyse new

viruses, and are distributed over the internet. In the

early 1990s the first “polymorphic” viruses emerged.

These frustrate this method of detection by disguising

themselves as they replicate, so that no two copies of

the virus look alike. The first versions of these viruses

just encrypted their bodies with random keys, but it

wasn’t long before viruses were written that randomly

mutated their decryption routines as well, making

detection very difficult.

To combat the surge of polymorphic viruses antivirus

software now include dynamic analysers that allow

potential viruses to unpack in an emulated

environment, while scanning the memory that they

modify for signatures so that the virus reveals itself and

is then detected. Various sophisticated virus unpackers

[1] have been developed using this approach, many of

which employ heuristics to accelerate analysis, but

recent threats present a further problem.

In the first six months of 2007 Symantec detected over

200,000 new malicious code threats, giving a 185%

increase over the previous six months [2]. All of the

detection techniques above rely on the prompt creation

of signatures for each new threat, but this flood of new

threats has swamped virus analysts. In response to this

vast influx of new malware, research has been made

into automated analysis techniques to accelerate the

process. Most important is research into automated

behaviour analysis tools (such as TTAnalyze [3])

which execute the malicious code in a safe

environment, like an emulated or isolated computer to

study its behaviour. However even these AV analyst

tools, in their current form, are inadequate in

addressing some recent more organised threats.

“Botnets”, networks of trojanized machines, are

starting to use “offline polymorphism” [4] where they

regularly download new updates from the internet

before signatures can be created and distributed, thus

hiding their mutation algorithm from the AV analyst.

For example “Storm” is part Trojan, part Botnet and

part Worm and has compromised between 0.25 and 10

million machines [5]. It uses a peer to peer network to

distribute new variants faster than the AV companies

can react. These Botnets are creating a “dark”

backbone to the Internet, which is not easily removed

and are being leveraged for profit, for example by

distributing the hosting of phishing sites using “Fast-

flux” [6], to frustrate their removal.

This offline polymorphism may have found the limit of

signature based detection. A key development along

the road to solving the problem has been recent

research into behaviour based detection techniques.

3. Behaviour Based Detection

For antivirus scanners to detect malware before it has

been studied they must perform some sort of automatic

analysis themselves. Ultimately analysis must be

2

© Tristan Aubrey-Jones 2007.

behaviour based, because no matter the disguise, a

piece of malware will behave badly, that is its purpose.

One technique for analysing the behaviour of a

program is to study the sequence of operating system

calls it makes [7]. Antivirus software can intercept

these API calls while a program is running, and use

heuristics to look for suspicious activity, terminating

those with harmful behaviour. Various heuristics have

been researched, such as looking for patterns used for

self replication [8], but these all rely on monitoring a

program once it is running. This is dangerous to rely on

because the malware might cause harm to the system

before it is recognized as malicious.

Alternatively we can adapt this approach to scan a

program by observing its execution it in an emulated

machine. TTAnalyse [3], a recently developed analysis

tool, uses the QEMU [9] emulator to do this, but

hardware emulators have always been very slow, and

virus writers have exploited this by using processor

hungry routines such as brute forcing their own

decryption [10], so that native execution might take 5

seconds but emulation would take 10 minutes.

A development that builds on this research could be set

to solve this problem by using “virtualization” as

opposed to hardware emulation, so that a large portion

of the instructions are executed directly, making

behaviour analysis fast enough to include in antivirus

software. This is done through “Dynamic Binary

Translation” [11] which translates and caches binary

code, replacing API calls so that they modify virtual

resources rather than the real system. This gives fast

execution, but also safely isolates the program and

allows intimate observation of its activities.

CWSandbox [12] has recently been developed as a tool

for AV analysts and uses a similar method. It does use

a virtual machine using DBT, but the analyser software

itself is also executed in the virtualized environment

and uses inline code overwriting to hook the API

functions which could allow malware to detect

analysis, and change behaviour to avoid detection.

Current research in this area is concerned with further

accelerating DBT, and enabling it to cope with self

modifying and multi-threaded code [13], two important

features in contemporary malware. The future of this

technology lies in “hardware virtualization”, new

processor architectures which include instructions to

support fast virtualization, such as AMD’s AMD-V

[14] and Intel’s VT-x [15], enabling a new generation

of “proactive” antivirus protection. All executables

could be analyzed in a virtual machine before they are

first executed, and disabled if they are found to have

malicious intent.

4. Impact

The deployment of these behaviour based detection

developments, could serve to drastically improve the

security of an organisation. Real-time behavioural

analysis could be initially deployed on email servers

and web gateways and serve to detect bespoke Trojans

intended for espionage [16], as well as repelling 0-day

threats and offline polymorphic viruses. The likely

expense of products may limit their initial distribution

and therefore fail to deal with existing Botnets of

largely unprotected machines, but could drastically

limit their rate of growth. Deployment of this

technology would no doubt provoke the criminal

community to develop new methods to evade detection.

For example logic and time bombs that only become

malicious under certain circumstances may not be

detected, and methods to detect virtualization are

bound to increase in sophistication. However verifying

the behaviour and intent of a program, rather than just

its appearance is certainly a step in the right direction

for security in IT.

5. References

[1] S. Josse, “Secure and advanced unpacking using

computer emulation,” Journal in Computer Virology, vol. 3,

no. 3, pp. 221-236, Aug. 2007.

[2] Symantec, “Symantec Internet Security Threat Report,

Trends for January-June 07,” vol. XII, Sept. 2007. [Online]

Available: http://www.symantec.com/threatreport/. [Accessed

Jan. 15, 2008].

[3] U. Bayer, C. Kruegel, E. Kirda, “TTAnalyze: A Tool for

Analyzing Malware,” in 15th Annual Conference of the

European Institute for Computer Antivirus Research

(EICAR), 2006.

[4] M. Schipka, “A road to big money: evolution of

automation methods in malware development,” in

Proceedings VB2007 Conference, Sept. 2007.

[5] P-M. Bureau, A. Lee, “Malware Storms: A Global

Climate Change,” Virus Bulletin, Nov. 2007, pp. 12-16.

[6] A. Solomon, G. Evron, “The world of Botnets,” Virus

Bulletin, Sept. 2006.

[7] J. Xu, A.H. Sung, P. Chavez, S. Mukkamala,

“Polymorphic malicious executable scanner by API sequence

analysis,” in 4th International Conference on Hybrid

Intelligent Systems (HIS), 2004, pp. 378–383.

3

© Tristan Aubrey-Jones 2007.

[8] A. Volynkin, V.A. Skormin, D.H. Summerville, J.

Moronski, “Evaluation of Run-Time Detection of Self-

Replication in Binary Executable Malware,” in IEEE

Information Assurance Workshop, 2006, pp. 184-191.

[9] F. Bellard, “QEMU, a Fast and Portable Dynamic

Translator,” in Proceedings of the USENIX Annual

Technical Conference, 2005, pp. 41+.

[10] P. Ször, D. Fellows, “Bad IDEA,” Virus Bulletin, Apr.

1998, pp. 18-19.

[11] K. Scott, J. Davidson, “Safe Virtual Execution Using

Software Dynamic Translation,” in Proceedings of the 18th

Annual Computer Security Applications Conference, 2002,

pp. 209-218.

[12] C. Willems, T. Holz, G. F. Freiling, “Toward

Automated Dynamic Malware Analysis Using CWSandbox,”

IEEE Security & Privacy, vol. 5, no. 2, Mar. 2007, pp. 32-

39.

[13] J. Wu, “Full Potential of Dynamic Binary Translation

for AV Emulation Engine,” in VB2006 Conference, Oct.

2006.

[14] AMD, AMD64 Architecture Programmer’s Manual

Volume 2: System Programming, pub no. 24593, Sept. 2007,

pp. 367+. Available: http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/24593.p

df

[15] Intel, Intel® Virtualization Technology for Directed I/O

Architecture Specification, pub no. D51397-003, Sept. 2007,

pp 12-13. Available:

http://download.intel.com/technology/computing/vptech/Intel

(r)_VT_for_Direct_IO.pdf.

[16] Rhys Blakely, Jonathan Richards, James Rossiter, and

Richard Beeston, "MI5 Alert on China's Cyberspace Spy

Threat," TimesOnline, December 1, 2007. [Online]

Available:

http://business.timesonline.co.uk/tol/business/industry_sector

s/technology/article2980250.ece [Accessed: Dec. 11, 2007].

