
Resurrecting Actors:
New Applications of an Old Paradigm in Engineering and Science
Tristan Aubrey-Jones <taj105@ecs.soton.ac.uk>; Supervisor: Bernd Fischer <bf@ecs.soton.ac.uk>

The Actor Model

Wireless Sensor Networks

Signal Processing

Massively Distributed
Computation

Conclusions

Concurrency: Actors &
Linear Types

•“Kilim”: Lightweight Java actors [2]
•Implemented via a byte code weaver
•Offers:

•1000s of fast lightweight threads.
•Efficient cooperative scheduling.
•Actor memory isolation and
efficient “zero-copy” message passing,
via a statically enforced linear type system

•Overcomes inefficiency of message passing
via linear ownership passing of messages:

•“Internet Operating System”: Middleware
for internet scale distributed computing
with SALSA actors (and MPI) [5].
•Implements: Adaptive decentralized load balancing
by profiling runtime actor topology (ARS).

•ARS gave 10x performance increase over
round robin on sparse topology
benchmark.

•Model of concurrent computation
•Proposed in 1977 by C. Hewitt [1].
•Actor = a mapping between an input
communication and a triple:

•New state/behaviour,
•Communications to send, and
•New actors to create

•Communicate only via message passing
•Isolated (no shared state)
•Implicitly concurrent, with no locks and no
shared memory.
•More flexible than shared memory model
•Easily distributed and migrated.
•Was stillborn as a niche AI interest due to:

•Functional programming bias
•Lack of highly distributed architectures
•Inefficiency of message passing

•Now being revived in various fields due to:
•Need to program new complex distributed
architectures (multi-core, WSNs, clouds).
•Usefulness of abstraction in automated
code generation & optimizations.
•Use of familiar imperative & OO syntaxes

1

3

2
α

α
n = new A

β
send β to nγ

An actor:

Input
messages:

β

Output
messages:

New actors:

class A: Actor { // Java

A nghbor;

int state = 1;

receive(Msg m) {

switch (state) {

case 1: if (m == Msg.ALPHA) {

state = 2;

nghbor = new A();} break;
case 2: if (m == Msg.BETA) {

state = 3;

nghbor.send(Msg.BETA);} break;
case 3: if (m == Msg.GAMMA)

state = 1; break;
}}

}

(defun ActorA (state neighbor) ; Lisp

(lambda (msg)

(case state

(1 (if (= msg 'alpha)

(ActorA 2 (ActorA 1 nil))

(ActorA state neighbor)))

(2 (if (= msg 'beta)

(ActorA 3 (neighbor 'beta))))

(ActorA state neighbor)))

(3 (if (= msg 'gamma)

(ActorA 1 neighbor)

(ActorA state neighbor))))))

Mealy automaton
to visualize
mapping. int state = 3

when receive β:
send β to n

A

B

CD

E

1 mps 5 mps50 mps

200 mps
PC1 PC2

A
BC

D E
1 mps

5 mps

50 mps

200 mpsPC1 PC2

Load
balanced

Non-
optimal

(mps = messages
per second)

•“ActorNet”: Mobile agent platform for
WSNs via a custom Scheme interpreter [3].
•Provides: Actor migration, Virtual memory,
Garbage collection, and Multitasking for Mica2.
•Enables: program portability, remote code
deployment, & reconfiguration to conserve energy.
•Used as the basis of the uQueries domain specific
language.

•Kilim demonstrates:
•Actor continuation passing allows fast task
switching
•Linear type systems can enable resource
sharing & fast message passing.

•IOS & ActorNet exploit:
•Actor migration to provide adaptive mobile
agent based programming.

•CAL shows actor-oriented programming can be
•very concise, logical hierarchical structure,
intuitive concurrency, and allows efficient
multiplatform code generation.

•As architectures are becoming more distributed
and more abstraction is required, the predicted
benefits of the Actor model are beginning to be
realized over 30 years after its conception [9].

Internet
A

B

B
C

D

C

D

Remotely reprogramming
a WSN using actorNet.

Duplicating and migrating
actor continuations, across
the WSN

Meta-actors
representing a query
deploy mobile actors

•“CAL”: Domain specific actor language
for signal processing algorithms [4].
•Automatic code generation of C and VHDL via
recent CAL2C and CAL2HDL generators [6].
•Very concise, more flexible, architecture
independent implementation => portable.
•Visual & hierarchical design via Ptolemy II [7].

actor sum[T] (T init) T A ==> T B:
T sum := init;
action [a] ==> [sum] do
sum := sum + a;

endaction
endactor

•MPEG4 Decoder: 4000lines CAL vs 15000 VHDL, 1.6x
faster performance & 4x faster development than
handwritten VHDL.
•Used by ISO for new MPEG “RCV” codec.

import kilim.*;

class HtmlMsg implements Message {
public String html; public HttpRequest req; }

class HttpRequest implements Message {
public Mailbox<HtmlMsg> replyTo;
public String url; public String[] cookies; }

class DatabaseConnection implements Message {
public Object jdbcConnection; }

class RequestQueue extends Mailbox<HttpRequest> {}
class DBConnectionPool extends Mailbox<DatabaseConnection> {}

class HttpRequestHandler extends Actor {

RequestQueue in; DBConnectionPool pool;
Mailbox<HtmlMsg> cartmb = new Mailbox<HtmlMsg>(),

searchmb = new Mailbox<HtmlMsg>();
ShoppingCartControl cartControl = ... ;
SearchResultsControl searchControl = ... ;

@pausable
public void execute() {

for(;;) {
HttpRequest req = in.get();
HtmlMsg reply = new HtmlMsg();
handle(req, reply);
sendReply(req, reply);

}}

@pausable
void handle(@safe HttpRequest req, @cuttable HtmlMsg reply) {

HttpRequest r = req.clone(); r.replyto = cartmb;
cartControl.put(r);
r = req.clone(); r.replyto = searchmb;
searchControl.put(r);

reply.html = "<html>”+cartmb.get() + searchmb.get() + “</html>";
}

@pausable
void sendReply(@free HttpRequest req, @free HtmlMsg reply) {

reply.req = req;
reply.req.replyTo.put(reply);

}

@pausable
private Results query(@safe DatabaseConnection con,

@safe String sql) {…}
}

class ShoppingCartControl extends HttpRequestHandler {
@pausable
void handle(@safe HttpRequest req, @cuttable HtmlMsg reply){

DatabaseConnection con = pool.get();
Results r = query(con, "select * from carts where ...");
reply.html = "<h2>Cart</h2><table>”+r.print()+”</table>”;
pool.put(con);

}
}

class SearchResultsControl extends HttpRequestHandler {
@pausable
void handle(@safe HttpRequest req, @cuttable HtmlMsg reply) {

DatabaseConnection con = pool.get();
Results r = query(con, "select * from products where ...");
reply.html = "<h2>Search results</h2><div>“ + r.print() + “</div>”;
pool.put(con);

}
}

Messages
are public
tree
structures

Actor entry point

Method may suspend

May only be read

May be structurally
modified but not
sent

May be sent / destructively read

Send message / transfer ownership

Receive message / get ownership

•Example: renders 2 parts of webpage in parallel
•When blocking on DB another part of page/request
can be handled via fast task switching.
•Database connections shared by a queue and
linear ownership passing (no locks).

•Very fast: 4x faster than Erlang, 100x Java threads!

n actors, n2 msgs [2]

• r is free
• r is invalid
• r is free
• r is invalid

• reply is free, req is cuttable
• reply is invalid, req is invalid

• con is free

• con is invalid

[1] C. Hewitt, “Viewing control structures as patterns of passing
messages,” Massachusetts Institute of Technology, Tech. Rep.,
1976.
[2] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors for
java (a million actors, safe zero-copy communication),” 2008.
[3] K. M. YoungMin Kwon, Sameer Sundresh and G. Agha,
“Actornet:
An actor platform for wireless sensor networks,” 2006.
[4] J. Eker and J. W. Janneck, “Cal language report: Specification
of the cal actor language,” University of California at Berkeley,
Tech. Rep. UCB/ERL M03/48, 2003

[5] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela, “The internet operating system: Middleware for adaptive
distributed computing,” in International Journal of High Performance
Computing Applications (IJHPCA), Special Issue on
Scheduling Techniques for Large-Scale Distributed Platforms,
2006.
[6] C. L. et al., “Dataflow/actor-oriented language for the design of
complex signal processing systems,” in In Proceedings of
Conference on Design and Architectures for Signal and Image
Processing (DASIP 2008), Bruxelles: Belgique (2008), 2008.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X.
Liu, J. Ludvig, S. Neunendorffer, S. Sachs, Y.
Xiong, “Taming Heterogeneity—The Ptolemy
Approach,” in proceedings of the IEEE,
91(1):127-144, Jan 2003.
[8] Y. Zhao, “An introduction to the CAL actor
language,” University of Salzburg, May 2002.
[9] T. Aubrey-Jones, “Resurrecting Actors: New
Applications of an Old Paradigm in Engineering
and Science”, University of Southampton, UK,
2009.

[7]

[8]

