
INDIVIDUAL RESEARCH REVIEW 1

Resurrecting Actors: New Applications of an Old
Paradigm in Engineering and Science.

Tristan Aubrey-Jones <taj105@ecs.soton.ac.uk>

Abstract—This report reviews new research into an old
programming paradigm for distributed computation called
the Actor model. The model is described, and four ex-
citing new applications are reviewed which apply the model
to large scale distributed computations, wireless sensor net-
works, embedded systems, and highly concurrent programs.
It is found that the actor model is being revived to provide
an intuitive abstraction from the underlying implementa-
tion of these systems. It is thus being used by code gen-
erators and middleware platforms to allow programmers to
produce portable and highly optimized applications for com-
plex architectures, with far greater ease.

I. Introduction

THE actor model [1] was proposed in the late 70’s as an
alternative to the shared memory model for concur-

rency, but was left stillborn. It is now being resurrected
in a number of fields, to help programmers write efficient
software for increasingly complex environments. By rais-
ing the level of abstraction, it enables code generators and
intermediate platforms to produce adaptive optimized im-
plementations, that would not otherwise be achievable.

This report reviews four recent contributions which all
follow this pattern to help developers program large scale
distributed computations, wireless sensor networks, highly
concurrent programs, and complex signal processing sys-
tems (see Figure 1). In each case researchers have devel-
oped and subsequently evaluated a prototype system, and
so each system will be briefly described, evaluated, and in-
teresting results stated. Finally conclusions will be drawn
about the success of the paradigm from all four.

II. The Actor Model

The actor model was proposed in 1977 [1] as an alter-
native model of concurrent computation to the concur-
rently proposed “communicating sequential processes” [2]
and functional/data flow models. It differs most notably in
that the model’s computational elements called “Actors”,
both transform data values and maintain state, and that
they can create new actors so systems are dynamic. As
such it is more powerful than either of its contemporaries.

An actor is a computational element which maps an in-
coming communication to a triple: a new behavior/state,
further communications to send, and new actors to cre-
ate [3]. It can thus be likened to an object with a public
mailbox, its own thread and entirely private state. Actors
are naturally concurrent as every actor’s state is isolated
and can only be accessed externally via message passing.
All coordination is via message passing and so there are no
shared variables or locks, just patterns of passing messages.
Thus actors can be co-located or communicate remotely
without breaking the operational semantics of a program.

Figure 1. New applications of the actor model

This property can be useful in a number of situations.
For example researchers performing Computational

Fluid Dynamics (CFD) simulations using many distributed
computers, do not want to be concerned about the com-
plexities of efficiently distributing the computation. CFD
approximates the state of a fluid as an array of veloci-
ties, which are recomputed by solving equations for each
cell at progressive time steps. A cell’s value at t + 1 de-
pends on its neighbor’s values at t, and so the problem
exhibits fine grained parallelism. However it can be made
coarse grained by concurrently evaluating regions of the
array and only sharing the edge values of each region [4].
This could be programmed using threads and a shared ar-
ray with locks to police shared boundary values, but if we
use actors the computation doesn’t need shared memory
and can be distributed over a network of machines. Each
region can be contained as an actor, which sends messages
to communicate its boundary values as per figure 2.

By making data dependencies explicit through message
passing, the actor model introduces flexibility into how pro-
grams are realized and so they become highly portable,
supporting many diverse platforms including heteroge-
neous distributed systems. This abstraction from the im-
plementation makes it aptly suited for difficult domains, as
essential program semantics can be captured concisely, al-
lowing code generators and runtimes to decide on exact im-
plementation details and include optimizations that would
not otherwise be possible. However despite these advan-
tages the Actor model remained largely unused for many
years, due to the continual acceleration of single threaded
hardware, the lack of truly distributed architectures, and
the niche AI bias of the original research. It is only now
with the increase in distributed architectures via wired and
wireless networks, multicore systems, and code generation
technology, that its usefulness is beginning to be realized.

2 INDIVIDUAL RESEARCH REVIEW

Figure 2. CFD Actor Communication

III. Large Distributed Computation: The
Internet Operating System

With the increasing prevalence of multicore and dis-
tributed architectures, there is an increasing need for
developer-friendly distributed computing frameworks. Ex-
isting application frameworks like MPI aid programming
such systems, but it typically falls to the application devel-
oper to implement component migration logic and any re-
configuration/load balancing strategy. Dynamic load bal-
ancing can be complex to implement but can also have
a dramatic effect on performance. This is especially true
when the target network is heterogeneous, Internet scale,
and dynamically changing. The actor model is ideally
suited for this situation, as its isolated state and explicit
message passing allows migration almost for free.

In 2001 the actor model was used as the basis of SALSA
[5], an language for mobile and Internet computing built
on top of Java. The language simplifies programming dis-
tributed systems by providing universal names, active ob-
jects and migration, such that it can be openly distributed
and dynamically reconfigured. It allows the definition of
“behaviors” like Java classes, containing internal variables
and message handlers, from which many actors can be in-
stantiated. Isolation is enforced by duplicating all mes-
sages before sending: a technique that can be very detri-
mental to performance. SALSA thereby allows programs
to be written as systems of intercommunicating actors,
which can be hosted locally, or distributed remotely.

This full potential of SALSA was realized in 2006 by
the “Internet Operating System” [6], a middleware plat-
form to automate dynamic reconfiguration of distributed
actor systems and research various load balancing strate-
gies. The IOS originally only supported SALSA but now
provides an API for MPI. Unlike similar systems, IOS de-
centralizes all reconfiguration decisions, performing them

at the nodes rather than at a central server. At each node
there are three pluggable modules: a module which profiles
application and system resource usage, a decision module
which evaluates whether a specific reconfiguration is worth-
while, and a protocol module which sends “work stealing”
requests to other agents and reconfiguration requests to
the application. Load balancing occurs when newly joined
or lightly loaded nodes, propagate requests to “steal work”
until an overloaded actor is found, at which point it may
be reconfigured and migrated to the underused node.

Various decision strategies have been evaluated on the
system including random work stealing (RS) and “actor
topology sensitive” random work stealing (ARS) which
monitors the number of messages an actor sends to remote
agents, in order to collocate tightly coupled actors. Ex-
periments with different actor topologies have shown that
although traditional RS yields lower message throughput’s
than round-robin (RR), by utilizing runtime knowledge
about the actor topology, ARS can considerably exceed it,
as it did by an order of magnitude on the massively parallel
sparse benchmark [6]. In one experiment where nodes were
added and removed from the network, the ARS version was
running 4x faster at the end than the version that could
not adapt. Recently the framework has been successfully
used to implement a distributed maximum likelihood fitter
for use in partial wave analysis of particle accelerator data
using the simplex algorithm [7].

The research demonstrates that using IOS with ARS
can dramatically improve performance, although has not
yet been evaluated on any very large real world applica-
tions. The implementation of the maximum likelihood fit-
ter shows the potential usefulness of IOS, but does not
seem to have been evaluated on anything like an Inter-
net scale network. However despite the lack of really large
benchmarks the framework does show that treating the ap-
plication as an actor system, not only eases migration, but
allows dynamic profiling of communication patterns and
efficient load balancing, without a priori knowledge about
the application or target architecture. It is also interesting
to note that the SALSA actor language does not seem to
have been used in any real world application, until the IOS
framework implemented some of the optimizations that it
theoretically made possible.

IV. Wireless Sensor Networks: ActorNet

Another topical hard-to-program environment is the
wireless sensor network, where small wirelessly communi-
cating devices need to coordinate and collaborate to har-
vest data or perform a task. These distributed systems
underpin the emerging “Ambient Intelligence” and can be
even more difficult to program than large scale systems
due to their primitive operating systems, memory limi-
tations, need to conserve energy, and inability to ignore
spatial distribution. For this reason various programming
techniques are being researched to raise the level of ab-
straction such that WSNs can be programmed with more
powerful constructs. A number of “macro-programming
languages” have been researched which translate a global

Aubrey-Jones: RESURRECTING ACTORS 3

system behavior into individual sensor programs, but one
promising new approach called “actorNet” [8] goes further
by using the actor model to develop a mobile agent plat-
form for WSNs on top of which domain specific macro-
programming systems can be built.

The core of actorNet is a variant of Scheme augmented
with actor primitives and a fine-tuned, multithreaded in-
terpreter written to run on TinyOS and the Mica2 hard-
ware. This decouples programs from the sensor OS (aid-
ing portability), and allows them to make use of virtual
memory, garbage collection, and efficient blocking IO via
an application-level context switching service. In addition
to these benefits the actor extensions enable multitasking
(par), asynchronous message passing, and actor migration
such that actors can roam and replicate across the net-
work as mobile agents, and sensors can be remotely re-
programmed. A key aim for WSNs is to perform process-
ing at the sensor, in order to conserve energy by reducing
communication, and so these “mobile actors” provide an
ideal execution environment as they enable resource aware
task allocation, i.e., for detection code to be moved to the
sensor. This system therefore provides the necessary foun-
dation for additional services like in network storage, and
more powerful macroprogramming.

In fact the first query-based macro-programming lan-
guage called “uQueries” uses actorNet to provide the com-
bination of dynamicity and query specification useful to
domain experts [9]. uQueries are translated into “meta-
actors” that spawn mobile actors which migrate across
the WSN to perform the query. Knowledge representation
techniques are used to track domain knowledge and enable
various query processing adaptations including automatic
optimizations to minimize energy usage.

The dynamicity and migration abilities of actorNet make
it well suited to flexible coordination of WSNs, although
it remains to be seen how useful it will prove in real world
applications. Abstracting away from the operating sys-
tem greatly improves portability, however the performance
penalties do not seem to have been evaluated. Future work
should compare the system’s execution speed, communica-
tion overhead, and energy usage to other systems. Should
the system’s efficiency be acceptable, it could well become
a very successful paradigm for programming WSNs, al-
though this will partly depend on the success of deriva-
tives like uQueries which exploit the model’s mobile agent
capabilities.

V. Concurrency-Oriented Programming: Kilim

Physically distributed systems aren’t the only situation
actors are being used to tackle. They are also being used as
a concurrency primitive for data centre applications with
split phase workloads, where many concurrent tasks need
to share some resources and so efficient and reliable concur-
rency constructs are essential. It is difficult to obtain cor-
rectness, fairness, and efficiency using shared objects and
fine-grained locks, and so various “concurrency-oriented
languages” like Erlang have been developed which use ac-
tors and message passing instead.

In 2008 a new framework called “Kilim” was presented
to help develop “robust massively concurrent systems in
mainstream languages” which uses a code post processor to
augment Java with ultra lightweight cooperatively sched-
uled threads (actors) and isolation aware message pass-
ing [10]. It thereby maintains all the familiarity of object
oriented programming whilst offering the robustness of iso-
lated concurrent threads with no locks and no shared mem-
ory. Kilim actors are essentially Java classes which extend
Task and provide a public execute method marked with
the @pausable annotation as per the example below.

class HttpConn extends Task {
@pausable public void execute() {

while (true) { HttpMsg m = readReq();
processMsg(m); }

}

@pausable public HttpMsg readReq() { }
}
new HttpConn(mbox).start();

Scheduling is optimized by mapping many actors onto
a few threads through the application of a continuation-
passing-style transformation on all @pausable methods.
Whenever Actor.pause() is called, the actor coopera-
tively stores its current continuation, and the scheduler
resumes another actor from its continuation. This is im-
plemented efficiently by weaving an extra fiber parame-
ter into all @pausable methods to signal to callers when
an actor has paused, and provide a store for its activation
frame. This is further optimized by detecting duplicate
values and constants during heap analysis, and omitting
them from the fiber. This task switching mechanism is
1000x faster than Java threads, and 60x faster than other
lightweight task switching frameworks.

In most actor languages state isolation is enforced by
cloning all messages before sending [5] causing a significant
performance penalty. In Kilim this is overcome through the
use of a “linear type system” whereby messages can only
be owned by one actor at a time, being destructively read
when sent, such that messages can be passed by-reference.
In this system messages must be unencapsulated values
with no internal aliasing, and therefore form public tree
structures. Isolation is enforced statically by determining
the capability of message objects at every node in the con-
trol flow graph using heap analysis. A message may either
be free (can be assigned to other messages and sent), cut-
table (can only be sent or assigned if destructively read),
safe (cannot be modified or sent), or invalid (once sent or
destructively read). Annotations are attached to method
parameters to require a certain capability is provided by
callers and thus guaranteed to the callee. For example in
the method foo below, p can only be assigned to a non-safe
variable, and once it has been assigned cannot be aliased
but only destructively read, such that it is only ever part
of one message.

void foo(@free Event ev, @safe Event msg) {

4 INDIVIDUAL RESEARCH REVIEW

p = new Event(); // p & ev are free
msg.a = p; // error: msg is safe
ev.a = p; // p becomes cuttable
ev.b[2] = p; // error: p is not free
ev.a = msg; // error: msg is not free
mailbox.send(ev); // ev becomes invalid

}

Micro-benchmarks have shown that Kilim is consid-
erably faster than Erlang, the current standard for
concurrency-oriented programming, performing 3x faster
at message passing, and 4x faster at actor creation, al-
though real world applications are still needed to evaluate
its fairness, cache locality and memory usage. More impor-
tantly though Kilim is a promising step towards efficient
and robust actor based concurrency in main stream object
oriented programming. The statically enforced memory
isolation simplifies reasoning about concurrency, whilst the
linear ownership type system [11] enables efficient transfer
of messages and shared resources (using the @sharable an-
notation). However the system is not yet complete: further
research is needed to formally prove the correctness of the
type system, the fairness of the system needs evaluating,
and its usefulness in a real world application still needs to
be demonstrated.

VI. Complex Signal Processing Systems: CAL

Actors are also beginning to be used to assist the devel-
opment of signal processing systems. Signal processing sys-
tems are becoming increasingly complex, such that efficient
design can no-longer rely on intuition, and tools that unify
architectural and algorithmic design are required [12]. Cur-
rent C++ based systems lack the concurrency operators
required by embedded systems, and require an unreliable
multiphase design process to transition from architecture
to implementation. Here again actors are providing a more
suitable programming abstraction, decoupling design from
implementation, and automating implementation and op-
timization through automatic code generation.

In 2003 the CAL language was defined by the Pt-
lomey research group at UC Berkley [13]. CAL is an ac-
tor/dataflow oriented language, which defines a high level
abstraction for composing static networks of concurrently
executing actors which communicate via token passing
through well defined ports. Unlike the original definition
of the actor model actors cannot instantiate more actors
enforcing a static topology. This constraint is implicit in
embedded architectures and enables diagrammatic repre-
sentation and visual programming to greatly ease design.
Furthermore hierarchical design is possible as actors can be
composed of networks of other actors, such that entire al-
gorithms can be designed graphically. The language there-
fore greatly improves the understandability of a design,
and its greater descriptiveness improves conciseness. For
example an MPEG-4 decoder system required only 4000
lines of CAL compared to 15000 lines of VHDL and 4100
of optimized C++ [12]. It is not surprising then that the
ISO/IES have chosen to use CAL in the new MPEG “RCV”

standard (ISO/IES 23001-4 & 23002-4).
In 2008 researchers presented a framework using CAL

to model, simulate and implement signal processing sys-
tems [12]. The framework contained 2 code generators:
CAL2C and CAL2HDL which produce a C program or a
VHDL description respectively, from a CAL model. Bench-
marks implementing an MPEG-4 Simple Profile Decoder
showed firstly than the C code was 130x faster than the
simulator, but more importantly that the VHDL gener-
ated was almost 4x smaller, performed 1.6x faster, and
was reportedly 4x faster to develop than an existing man-
ually coded VHDL implementation. It is possible that
other models would not perform this well, especially as the
framework doesn’t currently perform any cross-actor opti-
mization, however recent research claims to address this
by using “partial evaluation” as an optimized compilation
technique to yield (almost) no performance penalty [14].

CAL’s static topology does limit the system’s wider ap-
plicability, but for its intended domain, significantly in-
creases its usefulness. The MPEG-4 example demonstrates
CAL’s usefulness and benefits in a real world application,
as the system effectively exploits the actor programming
paradigm.

VII. Conclusions

The independent adoption of the actor model in four sep-
arate research areas indicates that the actor model is being
revived. When programmers can efficiently reason about
system behavior by intuition there is no need for tools or
paradigms to assist them, but when it becomes impractical
or impossible for intuition to produce an efficient system,
tools are needed to derive an implementation from a high
level abstraction. But now, as target architectures become
increasingly complex, more flexible abstractions and pro-
gramming tools to exploit them are becoming a necessity,
and so the usefulness of actors are beginning to be demon-
strated.

As Figure 1 illustrates the research reviewed indicates
that as code generators and middleware platforms are be-
coming necessary, the actor model is being used to provide
a new level of abstraction. This helps make programming
complex systems intuitive, and provides the architecture
independence required to be able to automatically gener-
ate efficient implementations for different platforms. In
some situations, like with actorNet, that abstraction may
then support more powerful domain specific languages like
uQueries that would not be possible without the actor
layer. All four contributions adjust the model slightly to
suit the domain, but the common themes remain. Kilim is
particularly interesting as it introduces actors with linear
types, showing them to be a very useful addition to the
actor model, allowing resources to be shared between ac-
tors (by passing them as messages), and providing scope
for efficient local zero-copy message transfer.

In general the research reviewed agrees that the shared
memory assumption is an unhelpful one, limiting the
portability and flexibility of systems. The actor model on
the other hand, is providing a common paradigm for all

Aubrey-Jones: RESURRECTING ACTORS 5

four systems, simplifying the development of distributed
applications of all sorts, and allowing optimizations that
would be impossible in the former. It is early days for all
four applications, but it seems the predicted benefits of ac-
tors are finally beginning to be realized over 30 years after
their debut.

References
[1] C. Hewitt, “Viewing control structures as patterns of passing

messages,” Massachusetts Institute of Technology, Tech. Rep.,
1976.

[2] C. A. R. Hoare, “Communicating sequential processes,” Com-
munications of the ACM, vol. 21, no. 8, pp. 666–667, 1978.

[3] G. A. Agha, Actors: A model of Concurrent Computation in
Distributed Systems. The MIT Press, London, UK, 1986.

[4] S. Barnard, R. Biswas, S. Saini, R. V. der Wijngaart, M. Yarrow,
and L. Zechtzer, “Large-scale distributed computational fluid dy-
namics on the information power grid using globus,” in Proceed-
ings of the The 7th Symposium on the Frontiers of Massively
Parallel Computation, 1999, p. 60.

[5] C. Varela and G. Agha, “Programming dynamically re-
configurable open systems with SALSA,” ACM SIG-
PLAN Notices. OOPSLA’2001 Intriguing Technology
Track Proceedings, vol. 36, no. 12, pp. 20–34, Dec. 2001,
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[6] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela, “The internet operating system: Middleware for adaptive
distributed computing,” in International Journal of High Per-
formance Computing Applications (IJHPCA), Special Issue on
Scheduling Techniques for Large-Scale Distributed Platforms,
2006, p. 2006.

[7] W. jen Wang, K. El, M. John, and C. J. Napolitano, “A mid-
dleware framework for maximum likelihood evaluation over dy-
namic grids,” in In Second IEEE International Conference on
e-Science and Grid Computing, 2006.

[8] K. M. YoungMin Kwon, Sameer Sundresh and G. Agha, “Actor-
net: An actor platform for wireless sensor networks,” 2006.

[9] R. Razavi, “Dynamic macroprogramming of wireless sensor net-
works with mobile agents,” in In 2nd Workshop on Artificial
Intelligence Techniques for Ambient Intelligence, 2007, pp. 43–
55.

[10] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors for
java (a million actors, safe zero-copy communication),” 2008.

[11] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types for
flexible alias protection,” in In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA. ACM Press,
1998, pp. 48–64.

[12] C. L. et al., “Dataflow/actor-oriented language for the design of
complex signal processing systems,” in In Proceedings of Con-
ference on Design and Architectures for Signal and Image Pro-
cessing (DASIP 2008), Bruxelles: Belgique (2008), 2008.

[13] J. Eker and J. W. Janneck, “Cal language report: Specification
of the cal actor language,” University of California at Berkeley,
Tech. Rep., 2003.

[14] M.-K. L. Gang Zhou and E. A. Lee, “A code generation frame-
work for actor-oriented models with partial evaluation,” in In
Proceedings of International Conference on Embedded Software
and Systems 2007. Springer-Verlang, 2006, pp. 786–799.

