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Abstract 
 

A project investigating and developing an implicitly concurrent programming language, 

based on a metaphor taken from the physical world is reported. The project is 

introduced and key background ideas explained making the case for a programming 

paradigm where programs consist of systems of autonomous agents, or active objects 

which communicate via message passing. A literature search researching the 

development of a similar paradigm called the “Actor model” is reported and criticised. 

A language enhancing Java with actors and linear types is defined and key decisions are 

discussed. Translation rules to reduce the language into Java are presented, and a 

prototype translator is developed. Example programs are written, compiled, and 

executed to evaluate the usefulness of the language. Conclusions are drawn and the 

language found to provide a familiar notation for implicit parallelism, and a compelling 

new model for concurrency, combining the performance of shared variables with the 

elegance of message passing. Finally further work is suggested to extend and refine the 

language, and its implementation. 
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1 Introduction 
 

As programming languages have progressed they have been abstracted further away 

from describing a sequence of machine dependant operations, and have favoured 

modelling an abstract algorithm which can then be made machine specific by 

compilation or interpretation. However, the implicit assumption that the algorithm 

designed is going to be realised on a single Turing machine has stayed engrained in 

almost all notations. 

 

This is a false assumption as there are many occasions where steps could be reordered, 

or performed concurrently without adversely affecting the result. Furthermore with the 

advent of multi-core, multi-processor and distributed architectures, it is now 

commonplace for machines to support at least some measure of parallel execution
2
. If 

we want to write programs that effectively make use of these machines, we must forget 

this assumption and reform our programming notations accordingly. 

 

The goal of the project is to investigate, and start development of a language for 

concurrent programming, based on a metaphor of concurrency taken from causation and 

the physical world, aimed at making better use of modern multi-processor computers. 

This will be achieved by building on the Actor model of computation, to design a 

language with similar grammar to an object oriented language so that it would be easy 

for an object oriented programmer to learn. Possible language constructs will be 

investigated and chosen to enable powerful yet understandable modular programming. A 

further aim is to produce a language grammar, and implement a translator for the 

language that will output Java code which could be executed by multiple processors on a 

single machine. 

 

1.1 Background 

 

If we liken a program to a play in the theatre, then traditionally there would be a single 

processing unit that would play all the parts, turn by turn. Now we have machines where 

we have a cast of processing units, all available to play different parts. If we are to make 

proper use of these machines we need to stop writing the scripts specifically for one 

actor, but rather for a full cast. In this way the play can be performed in different ways 

depending on the size of the available cast. The same program would still be executable 

by a single processor, but it could also be efficiently partitioned over any number. 

 

This is already possible to some extent as most modern operating systems provide 

facilities so that several separate processes can execute simultaneously. The limitation of 

the current approach is that for concurrent execution to be possible the processes must be 

separate, each programmed as a distinct single sequence. This is acceptable when a 

problem is embarrassingly parallel
3
, so that it can be easily divided into independent 

parts, but many problems are highly interdependent “or fine grained” [28, 33] and 

cannot be so easily separated. It is possible on some platforms to have multiple “threads” 

of execution with shared memory, but each thread is still a single sequence and so 

                            
2
 E.g. As of May 2008 over 36% of the user’s of the Steam online gaming network use 2 CPUs [27]; Intel 

revamps its road map to focus on multi-core architectures [29]. 
3 Such as Monte Carlo calculations [32]. 
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nontrivial interactions between threads require complex synchronization and are very 

difficult to design and debug. 

 

A far better approach would be to incorporate flexible parallelism into our fundamental 

programming constructs [28], by introducing a measure of ambiguity in our 

programming model. In traditional imperative programming each statement can only be 

executed, after the previous one. This constraint is critically important in some places, 

without which the program behaviour changes, but in other places it may be an 

unnecessary stipulation. By making this constraint universal we limit the kind of devices 

that we may use to execute the code, and especially make efficient concurrent execution 

very difficult [25]. 

 

The sequential constraint has its roots in one of the most fundamental of all physical 

laws: “causation”, where each action causes further actions, which will cause others, 

forming chains of temporal dependency. A single threaded program can be thought of as 

a single causal chain where each instruction is caused by the completion of the previous 

one. However this is only a special case of the real world scenario, when in reality many 

actions occur at once, each of which being caused by a subset of the actions that 

preceded it.  

 

To introduce the parallelism we see in the real world into our programming we need to 

somehow specify an action’s causal dependencies, so that when order matters sequence 

is forced but mutually independent actions may be executed in any order, even 

concurrently. In this way we not only support instruction level parallelism and task 

parallelism, but the parallel execution of sections of code throughout our programming. 

This is also highly desirable as it means that when programming we do not specify much 

more than the minimum causal constraints required for the algorithm to perform 

correctly, giving the potential for the maximum possible concurrency. 

 

In the physical world actions don’t just happen abstractly in the ether, they are 

associated with objects, and affect objects. If a non existent tree falls down in the forest, 

and doesn’t affect any real object, then it doesn’t really fall. Correspondingly every 

“effect” that has been caused, must have affected some real object. So for any parallel 

programming model to be useful, it must have some notion of separate “objects”, or 

areas of memory, whose state can change in consequence to an action. Thus the clear 

separation and grouping of independent state variables, is key to enabling concurrency, 

as if there is only a single conceptual “state” only one action can affect that state at a 

time forcing linear execution. 

 

Applying these basic conclusions drawn from how the world works provides a natural 

way to program, where instead of issuing a sequence of commands that a single machine 

must obey, we describe an abstract environment (or causal system) of distinct, but 

interacting objects, which can be simulated on virtually any specific computational 

device. The objects could be distributed over many individual nodes interacting via a 

communication network, and mutually independent effects could be evaluated by 

separate processing units within each node.  

 

This is similar to the object oriented programming paradigm, only instead of passing a 

single thread of control flow between object methods, notifications are received by 

objects causing reactions which potentially affect the object’s state and send further 

notifications to other objects. In this way each unique object has its own independent 
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state, and a mapping between notifications and reactions, or causes and their effects. 

This is like designing a machine with separate interacting components so we do not 

define a precise unalterable algorithm, but a model or machine with causal properties, 

thus giving a clear modular structure and allowing intuitive concurrent programming. 

This model provides a natural way to think about parallel computing and it is this model 

of programming that will be investigated and developed further. 

 



© Tristan Aubrey-Jones 2008. 9

 

2 Literature Search 
 

This model of computation is almost identical to one revealed in the literature search, 

which identifies Hewitt, Bishop and Steiger as the first people to suggest it, calling it the 

“Actor model of Computation” [1]. This is very similar to the idea suggested earlier 

where the objects in our environment are called “actors”, which interact with each other 

via message passing [2]. 

 

Here a program describes an “actor system”, which is almost identical to the 

environments or “causal systems” described earlier, where each actor may receive 

messages and respond to them by changing their internal state, creating more actors, and 

sending further messages. Thus actors are active objects which may act concurrently, 

reacting to causes when messages are received, by affecting effects on themselves, and 

causing further effects by sending further messages. This allows sequences of execution 

(or causal chains) to be achieved by each step sending a message, to trigger the next. 

2.1 The History of the Actor Model 

 

The Actor model of computation was first proposed in 1973 by Hewitt, Bishop and 

Steiger at the International Joint Conference on Artificial Intelligence [1]. It was 

proposed as a universal formalism for artificial intelligence, and the first operational 

model was published by Irene Greif in 1975 for her doctoral dissertation [2]. Two years 

later Hewitt and Baker published the fundamental laws for actor based computation [3], 

and a paper demonstrating the model’s ability to describe existing control structures [4]. 

Clinger developed the first denotational semantics for his doctoral dissertation in 1981 

[5], by using Plotkin’s theory of “power domains” [6]. In 1985 a paper introducing Act3, 

an actor language based on extending a group of Lisp machines, was published [7], and 

the next year Agha published a paper describing SAL (Simple Actor Language) [8] 

which incorporated a number of language extensions, most notably “continuations” to 

allow reactions to wait for responses from other actors before completing.  

 

By this point the model itself had been clearly formalised, and over the next 15 years 

research was done by Agha and others with a view to develop an actor based language 

for open distributed systems [9 - 21]. This included work focussed on developing 

mechanisms for large scale distribution [10, 11, 16], and techniques for modularisation 

and abstraction in actor languages [15, 17, 19]. The papers published in these years also 

aimed to advocate the model to the wider research community. This research culminated 

in the development of an actor based language for open distributed systems called 

SALSA (Simple Actor Language System and Architecture) [21] in 2001. 

 

In the past 7 years the SALSA compiler has been developed
4
, and meanwhile at Berkley 

ideas from the actor model have been used in the development of “actor-oriented 

programming” [22 - 25]. This takes the fundamental concepts of the actor model, but 

makes an actor’s internal implementation heterogeneous. Actors have well defined 

interfaces and can be inherited to allow a clear modularity [24]. When programming, 

actors can be visually interconnected such that writing a program is very reminiscent of 

modular electronic design [23].  

                            
4 See http://wcl.cs.rpi.edu/salsa/ 



© Tristan Aubrey-Jones 2008. 10

 

 

Despite the progress in this field, there still does not exist a purely actor based language 

for general purpose programming, and specifically for deployment on multiprocessor 

architectures. 

 

2.2 Model Evaluation 

 

The Actor model as described by Agha [8] is a powerful model for computation that 

very much follows the physical metaphor described earlier. A huge advantage is that 

concurrency is one of its fundamental tenets, rather than an inconvenient add-on. 

Furthermore the use of message passing as the only mechanism of inter-agent 

communication means that concurrent access to a single resource or area of memory is 

implicitly prevented.  

 

However this blessing can also be a curse. A downfall of the actor model is that “any 

object passed as an argument is cloned at the moment it is sent, and the cloned object is 

then sent to the target actor” [26]. This copying could be unnecessary, particularly when 

implementation is on a single, multiprocessor system. Furthermore if a resource needs to 

be shared and not copied, it must be implemented as an actor, and accessed via message 

passing (see Appendix B for relevant examples). This may sometimes be convenient, but 

there are often cases where a resource may need to be exclusively accessed by one actor 

at a time, and where direct access to the resource is desirable as the message passing 

overhead may be unacceptable. 

 

The language designed here will therefore follow the Actor model for the most part, 

taking advantage of prior research into its semantics, whilst at the same time solutions to 

its deficiencies are proposed and employed. 
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3 Language Definition 
 

Prior to the discovery of previous work on the Actor model, 

experimental programs were written using an almost 

identical model. For example a graphical pocket calculator 

application was written and is listed in appendix A. In these 

experimental notations, objects directly mimicked objects 

in the real world. Every existent thing has 3 facets: the 

actuality of its being (the thing in itself), an externally 

visible image, and the ability to interact with other objects
5
. 

In computer science this universal principle is expressed in 

the model-view-controller design pattern, where the model 

stores an entity’s state, the view projects an external image 

of that state, and the controller allows iteration with it. In 

these early experiments each object had state variables, 

would be visible through “observers”, and would interact 

with others by reacting to messages. 

 

After considering various abstract syntaxes based on regular expressions and extending 

state machines to include predicates, it was decided that an approach borrowing from 

object oriented class declarations would be more suitable. Later prototypes featured 

“reactions” like method calls, each of which defined how to react to a certain message 

type.  

 

Since the discovery of existing research on the Actor model these ideas have been 

refined and extended, resulting in the language definition that follows. Much of the 

research on the Actor model has focussed on functional notations, thus alienating it from 

those more comfortable with its closest natural neighbour, the object oriented 

programming paradigm. Thus the language presented here uses a Java-like syntax, as an 

extension to Java, to minimise the learning curve for those familiar with similar 

languages. This chapter gives an overview of the syntactic design of the language, and 

discusses some of its key design decisions.  

3.1 The Actor Class 

 

The kernel of an actor language is the grammar for declaring an actor behaviour type. A 

behaviour type defines a causal mapping between incoming messages and tuples of: new 

behaviours to adopt, new actors to create, and messages to send. The first actor 

languages defined behaviour types which contained state parameters and a function that 

was evaluated when a message was received [8, 9]. This function branched on the 

message’s type and actor’s state, and contained “replacement behaviour” expressions to 

specify the behaviour type and state that the actor should adopt when responding to a 

subsequent message. Messages were received in the context of the destination actor’s 

current behaviour, executing its behaviour function and defining a new behaviour in 

which any following message is received. Thus an actor’s lifetime consisted of a chain 

                            
5
 Idea derived from the Christian doctrine of God as trinity, one God, yet in three persons: Father (the 

actuality of his being), Son/Word (the revelation or exact representation of his being) and Spirit (the 

influence and presence of his being that interacts with creation). See http://en.wikipedia.org/wiki/Trinity. 
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of behaviour states, where incoming messages cause the actor to pass from one state to 

another.   

 

This system of switching behaviour though conceptually elegant is not intuitive. 

Furthermore letting actors change their behaviour type during runtime, requires a 

dynamic type system counter to Java’s static typed class system. Thus a system has been 

designed that is theoretically equivalent, using an “actor class” construct to declare 

behaviour types with state variables that persist across message deliveries, such that 

actors can vary their behaviour by modifying these state variables and then branching on 

them, whilst their type remains constant. These actor classes must define how an actor 

should react when it receives a message, in order to specify the causal mapping, between 

an incoming message and the effect that it causes.  

 

The switch and if statements in Java can be adopted without modification to allow 

selection based on the actor’s state and the value and type of the message. The grammar 

for an actor class definition could either define a single block of if statements, or a 

number of separate members. SAL actor behaviours define a single block, but its top 

level is commonly a series of if statements branching on the incoming message type [8] 

but in Java this would require excessive typecasting. SALSA defines named “message 

handlers” to which messages are sent, decomposing the block based on an implicit 

“message handler name” parameter in every message [26]. These handlers look very 

similar to methods and so would be familiar, but it may not be distinct enough, so that 

the concept of receiving messages could be confused with method invocation. 

Furthermore this syntax requires the handler desired to be explicitly coded rather than 

being selected by value, preventing the possibility of automatically invoking a different 

reaction based on some value. Allowing messages to be arbitrary objects allows them to 

be actors, and encourages actors to be designed as agents reacting to stimuli rather than 

collections of related subroutines. For the added flexibility it provides, and its more 

natural modelling of actor behaviour, the language uses anonymous reactor members, 

which simply define the message object type that they handle. 

 

An example actor class definition and illustration of its meaning follow: 

 

 

public_aclass_SumActor_{ 

    int_i_=_0;     

 

    class_Reset_{} 

    react_(Reset r)_{_i=0;_} 

 

    class_Get_{_Actor_sender;_} 

    react_(Get_g)_{_g.sender_<--_i;_} 

 

    react_(int_n)_{_i_+=_n;_} 

 

    react_(String_n)_{_i_+=_Integer.parse(n);_} 
} 
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[Figure 1: Diagram illustrating the SumActor actor class example.] 

 

3.2 Inheritance and Interfaces 

 

An advantage of the decision to define an actor’s behaviour using a number of reactor 

members is that it makes actor class inheritance possible, and allows the definition of 

actor interfaces. An actor class that “extends” another inherits all of the fields and 

reactor members in the base class. This facilitates code re-use and allows the 

construction of progressively more complex actors. Further to this, because messages are 

statically typed it is possible to define actor interfaces, that when implemented guarantee 

that an actor defines a reactor for the message types defined.  

 

The grammar for defining actor classes and actor interfaces is defined below. Only the 

major productions are defined here; for the full language definition refer to Appendix C. 

 
type_declaration ::= modifiers ( actor_class | actor_interface 

| java_class | java_interface ) 

 

actor_class ::= ( aclass | actor ) identifier 

[ extends data_type ] 

[ implements data_type_list ] 

actor_class_body 

 

actor_class_body ::= “{“ { modifiers actor_class_member } “}” 

 

actor_class_member ::= react “(“ data_type identifier “)”  

statement_block | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 

identifier “(“ expression_list “)”  

constructor_block | 

 

data_type identifier  

“(“ parameter_list “)” statement_block 
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actor_interface ::= ainterface identifier 

[ extends data_type_list ] 

actor_interface_body 

 

actor_interface_body ::= “{“ { modifiers actor_interface_member } 

“}” 

 

actor_interface_member ::=  react “(“ data_type identifier “)” “;” | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 

[Figure 2: BNF for actor classes and actor interfaces in minimal language] 

3.3 Resource sharing 

 

As was discussed previously, a severe limitation of the actor model is its failure to 

adequately support the sharing of resources between actors. Messages are sent by-value, 

and actors by-reference and so shared resources must be implemented as actors. This is 

not always intuitive and is often inefficient, as a resource may be a large data structure 

where duplication is expensive, and where direct access to the resource is desirable. A 

further problem arises if a resource actor needs to be locked so it can only be used by 

one actor at a time. This behaviour can be achieved by using a secretary actor to buffer 

incoming messages whilst it is “locked”, but it is far from elegant. Appendix B lists a 

queue actor which can be locked, such that it blocks other requests until unlocked, but 

the code is convoluted and prone to the kind of bugs that existing constructs for 

concurrency suffer from. 

 

There seem to be a number of circumstances where it would be useful to be able to 

guarantee that only one actor can have access to some object or actor, but still be able to 

share this exclusive access between actors. Given that the actor model already defines a 

construct for the transference of a message from one actor to another, one possible 

solution to this problem is to extend this to allow the transference of resource ownership 

between actors. Messages could either be copied when sent, or transferred such that the 

sending actor can no longer access the resource once it has been transferred. The 

complication here becomes how to police the ownership, so that once transferred a 

resource cannot be accessed by the sender. 

 

A method considered to achieve this was to define special resource fields within actors, 

which can be populated when a resource is received and then destroyed when 

transferred. However forcing the resource to reside in a special field means that it could 

not be passed to a function and could only be transferred into equivalent fields. A better 

method defines actor and object “resource types” which may never be referenced by 

multiple actors, so that resources can be received like normal messages.  

 

The solution employed builds on the two discussed above to define certain types that can 

only be referenced by one identifier at a time, so that every read is a destructive read. 

These types cannot be assigned, but only transferred between identifiers and between 

actors so each object is be guaranteed to only be accessible through one identifier in one 

actor at any one time, and yet the reference can be passed between actors. This avoids 
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introducing further complexity as the message passing metaphor is already essential and 

efficiency is improved as many messages can be transferred by reference, enabling 

significant optimizations on shared memory architectures. Prior work on just such a 

method of typing refers to these as “linear types” [30, 31]. Experiments comparing the 

use of such types, with making resources actors and using mutual exclusion locks can be 

found in Appendix B. This approach gives the efficiency of variable sharing IPC with 

the understandability of message passing, eliminating the need for complex 

synchronization techniques and the subtle bugs their misuse can cause. 

3.4 Reaction statements 

 

Decisions have to be made regarding the nature of the code in reactor blocks. Early 

notations were extensions to functional programming languages so there was no 

mandatory evaluation order for expressions. Apart from the precedence of operands over 

operators, expressions could be evaluated concurrently. The question is therefore, should 

similar parallelism within reactions be assumed in this language, or should statements 

execute sequentially? 

3.4.1 Concurrency within Reactions 

 

The first actor languages could specify ambiguity in execution order because 

behaviour’s state parameters were never mutated once defined, so reactions did not 

mutate shared variables but defined replacement behaviours using become expressions. 

Imperative programming however, necessitates linear execution order for statements 

because statements modify global state rather than compute functions of operands. Thus 

statement execution in reactor blocks must be fundamentally sequential although the 

inclusion of a construct to allow the parallel execution of some statements is possible. 

 

The simplest construct to achieve this is the par block [34]. This is a composite of 

statements, all of which may be executed in parallel. The major limitation of such a 

construct is that to be of use its children must be able to modify shared variables defined 

in higher scopes. This would necessitate an additional construct for variable locking thus 

blurring IPC techniques. The possible restriction of giving par blocks read only access to 

variables in higher scopes has been investigated, but shown to severely diminish their 

usefulness. Furthermore equivalent parallelism can already be defined by creating new 

actors. Therefore as support for block-oriented parallelism adds nothing to the power of 

the language and creates problems with variable sharing, it is not implemented as a 

fundamental construct. 

3.4.2 Control flow within Reactions 

 

If reaction statements are to be sequential the next question is what control flow 

constructs should be incorporated? Java supports method invocations, loops and the goto 

statement, but these may not be needed or appropriate. As was discussed previously, 

pure actor languages do not define any sequence so an actor’s behaviour can be thought 

of as an instantaneous “reaction”. Control flow is specified solely through message 

passing. Similarly any desired computation can be described using a minimal language 

where reactor blocks are simple sequences of statements (including conditional 

branches) so no further control flow is required. Iteration can be performed using tail-

recursion, and general recursion through the creation of new actors. Method invocations 
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can be achieved by sending a request message to an actor, and then reacting to a 

response message returned to the caller. If the method call should be performed 

synchronously incoming messages to the caller actor should be buffered until the 

response it received. A syntactic sugar for just such a technique is developed later in 

section 3.5. 

 

Thus block-oriented iteration and method calls are not required, in fact their use deviates 

from the strict Actor model, as reactions may not ever terminate. The decision to include 

them must be based on whether their convenience warrants this deviation. If Java’s large 

existing class library is to be leveraged method invocation must be possible, despite the 

fact that this could lead to very computationally expensive or eternal reactions. And 

since this is required, “internal methods” whose blocks have the same syntax as reactor 

blocks have been incorporated into the actor class’s grammar. These increase code reuse 

within an actor’s definition, and can be used for recursion and thus finite iteration via tail 

recursion. Since tail recursion is possible the addition of loop constructs would not add 

any extra possible complexity; however the decision to omit them has been made to 

encourage the implementation of short “instantaneous” reactions that make full use of 

message passing discouraging long winded reactions.  

3.4.3 Statement Grammar 

 

Important productions for defining a reactor statement block in the minimal language is 

defined in Backus-Naur form as follows. Productions are omitted; for the full language 

definition refer to Appendix C. 

 
statement_block ::= “{“ { block_statement } “}” 

statement ::= “;” | 

 

statement_block | 

 

if_statement | 

 

switch_statement | 

 

return_statement | 

 

break_statement | 

 

expression_statement 

 

expression_statement ::= expression “;” 

 

expression ::= expression1 [ assignment_op expression1 ] 

 

assignment_op ::= “=” | <-- | += | -= | etc... 

  

 

[Figure 3: BNF for reactor statements] 

3.5 Extended Language Definition 

 

The language definition presented up until this point provides a minimal actor language 

that implements the whole Actor model and so is sufficient to express any construct 

required [4]. This section describes some additional syntactic sugars for common 

programming patterns, all of which can be translated into the minimal language.   
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3.5.1 Expression Actors 

 

One very common programming pattern is the request response pattern where some 

action is requested and once complete should return some information to the requester. 

This pattern can be explicitly written in terms of message sending and actor creation, but 

it is long winded and so a syntactic sugar for it has been devised. The shorthand is based 

on the concept of an “expression actor” as described by Agha [8] where messages sent to 

an expression actor contain a reference to the actor to send the result to. 

 

 

This shorthand allows some actor classes to define a return type, which must be returned 

by all of its reactions as above. 

3.5.2 Fork blocks 

 

For expression actors to be of use a simple means of invoking them and handling their 

response messages is desirable which does not mandate the explicit declaration of 

reactors to handle responses. Furthermore requests often need to be synchronous, as the 

calling actor may need the result of the invocation in order to complete its reaction. 

 

A shorthand providing a simple mechanism to achieve this has been designed called the 

fork block. This construct is much like a let expression in Lisp where a number of 

expression actors may be invoked and their results assigned to local variables within a 

block, which is executed when they have all responded. 

 

 

Here an instance of an expression actor class is invoked using a similar syntax to a 

method invocation expression. When the fork block begins, requests are sent to all of 

the callee actors and when all the replies are received the continuation block executes. 

Once the requests have been sent execution continues sequentially, so that the forks are 

like asynchronous method calls and their bodies are like call-back functions.  

 

As this construct creates the possibility that multiple fork bodies execute concurrently it 

must be semantically verified that only one of any possibly multiple concurrent forks 

access variables in a higher scope. This restriction isn’t too onerous as forks are often 

nested so they execute sequentially (see next section) and even when parallel they often 

only require access to the results of their invocations.  

aclass ExpressionActor extends Actor returns int { 

    class Add { int a; int b; } 

    react (Add add) { 

        return add.a + add.b; 

    } 

} 

1: ExpressionActor expActor = new ExpressionActor(); 

2: fork ( int sum1 = expActor(new Add(1, 2)); 

3:        int sum2 = expActor(new Add(5, 6)) )  

4: { 

5:     this.value = sum1 * sum2; 

6:     System.out.println(“Fork complete”); 

7: } 
8: System.out.println(“Fork called”); 
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3.5.3 Sequential Expression Actor Invocations 

 

Operations are frequently required to be executed in sequence and so a further shorthand 

has been incorporated to allow expression actors to be invoked sequentially like the left 

hand example below: 

 
int a = expActor1(1); 

expActor2(a * 3); 

int b = expActor3(a); 

fork(e4(1); e5(2)); 

System.out.println(b); 

 

 

 

 

fork (int a = expActor1(1)) { 

    fork (expActor2(a * 3)) { 

        fork (int b = expActor3(a)) { 

            fork (e4(1); e5(2)) { 

                System.out.println(b); 

            } 

        } 

    } 

} 

 

Here expression actors are invoked in sequence such that each is sent its request only 

once the previous has responded. This translates into nested fork blocks as per the right 

hand example above.  

3.5.4 Actor events 

 

A further design pattern that is particularly useful is the publish-subscribe or observer 

pattern used in event-based programming [34]. Objects define “events” which may be 

triggered, and to which multiple “event handlers” subscribe such that they receive 

notifications when the event is triggered. The message sending primitive in actor 

programming makes the language ideally suited to event-based programming, as event 

handlers can be triggered asynchronously and event handlers execute concurrently. No 

extra syntax is required for the definition of event handlers, as actors themselves are 

aptly suitable, but a useful shorthand to create publicly accessible events has been 

defined to provide a concise method for subscription. 

 

3.5.5 Condition Reactions 

 

Another extension that has been investigated is the ability to react to conditions on local 

state variables. This construct was first considered in initial experiments and has been 

found to provide a simple mechanism for iteration, and a useful mechanism to hook 

complex state changes. 

 

 

The example above is a counter which displays the current count every 10 increments. 

aclass Counter { 

    int i = 0; 

    class Inc {} 

    react (Inc m) { i++; } 

    react-when (i % 10 == 0) {  

        System.out.println(i);  

    } 
} 
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3.5.6 Message Declaration Shorthand 

 

In order to avoid repetitive definition of message object types, a syntactic sugar has been 

defined to produce a passive object class from a named parameter list, as follows: 

 

3.5.7 Extension Grammar 

 

Modified and additional productions for the extended language are given below. For the 

full extended language definition, please refer to Appendix C. 

 
type_declaration ::= modifiers ( actor_class | actor_interface | 

message_type | java_class | java_interface ) 

 

actor_class ::= ( aclass | actor ) identifier 

[ extends data_type ] 
[ implements data_type_list ] 

[ returns data_type ] 

actor_class_body 

 

message_type ::= message identifier “(“ parameter_list “);” 

 

 
statement ::= “;” | 

 

statement_block | 

 

if_statement | 

 

switch_statement | 

 

return_statement | 

 

break_statement | 

 

expression_statement | 

 

fork_statement 

 

fork_statement ::= fork “(“ { fork_exp } “)”  

[ statement_block | “;” ] | 

 

fork statement_block 

 

fork_exp ::= local_variable_declaration | 

 

expression_statement 

 

 
actor_class_member ::= react “(“ data_type identifier “)”  

statement_block | 

 

react-when “(“ expression “)” 

statement_block | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 
identifier “(“ expression_list “)”  

message Message1 (int n, String s); 



© Tristan Aubrey-Jones 2008. 20

 

constructor_block | 

 

data_type identifier  

“(“ parameter_list “)” statement_block | 

 

event type_name identifier  

{ “,” identifier } “;” 

 

actor_interface_member ::=  react “(“ data_type identifier “)” “;” | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 

event type_name identifier  

{ “,” identifier } “;” 

 

 

[Figure 4: BNF for extended language] 
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4 Language Translation 
 

The language defined previously extends Java and can thus be implemented by 

translating the extensions into plain Java. This chapter presents and explains some key 

translation rules. These translation rules could be modified to optimize the performance 

of the java emitted, but those given lead to correct execution and are used in the 

prototype compiler. The extended language can be expressed in terms of the minimal 

language, and so the rules are organised into a separate section for each. For the full list 

of translation rules please refer to Appendix D. 

4.1 The Minimal language 

 

The essential element of the language is the actor class, which can be realised as a java 

object with its own thread, so actor classes translate into java classes which inherit from 

the common ajava.lang.Actor class (see Appendix E). Thus actor inheritance is 

implemented through class inheritance, and actor interfaces can be enforced using java 

interfaces. Each member of an actor class translates into one or more java class 

members. Fields and private methods are simply subsets of the java syntax and so need 

little modification. Each reactor translates into a publicly accessible ‘deliver’ method 

which buffers the incoming message, and a private ‘react’ method which contains the 

actual reaction behaviour. 

 

f3(reactor_member(message_type, message_id, reactor_number, block)) 

= 

    public void deliver(message_type message_id) { 

        bufferMessage(new ActorMessage(message_id, reactor_number)); 

    } 

 

    protected void react(message_type message_id)  

    f5(block) 

 

A deliver method takes one parameter, the message send, and appends it to the actor’s 

message queue along with a reactor number identifying its corresponding ‘react’ 

method. Every actor class overrides the protected ‘processMessage’ method, which de-

queues the message, casts it to the correct type based on its reactor number, and invokes 

its react method. 

 

The final key element of the minimal language is the transference operator which sends 

messages to actors and transfers linear objects between identifiers. 

 

f7(transfer_expression(lhs, rhs)) 

          If lhs is an actor. 

= 

                 If rhs is a basic type OR rhs is a class creation expression: 

         lhs.deliver(rhs); 

 

                 Else 

         lhs.deliver(rhs.clone()); 

 

          Else 

= 

    lhs = rhs; 
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Transference expressions take the form ‘lhs <-- rhs’ and translate into the invocation 

of a ‘deliver’ method if the destination is an actor or an assignment if it is a passive 

object. If the ‘rhs’ expression is of a linear (or basic) type it is passed as is, by reference, 

otherwise the expression translates to invoke the ‘clone()’ method on the original 

expression. Finally to make linear object reads destructive any statement that contains a 

reference to a linear type translates to the same statement and a null assignment to that 

reference. 

 

4.2 The Extended language 

 

Expression Actors 
 

Expression actors define a return type, so that they can be invoked like methods, and so 

reactions return values when they complete. To do this incoming message types must 

include a reference to the calling actor so return statements can be translated into 

message sends to this actor. Thus a response message class is generated for the actor and 

a nested request class is generated for each reactor that encapsulates its message type 

and the calling actor. 

 

translate_exp_member(reactor_member(message_type, message_id, 

                                     reactor_number, block), actor_body) 

= 

    private-static-class-message_typeRequestMessage  
                   extends-ajava.runtime.ActorRequestMessage 

    { 

        public-message_type-value; 

        public-message_typeRequestMessage(final-Actor-rsvp,-final-int-reqId) 

        { 

            super(rsvp,-reqId); 

        } 

    } 

 

    react-(message_typeRequestMessage-reqMessage) { 

        message_type message_id-=-reqMessage.value; 

        translate_reactor_block(block) 

        create_condition_checks(actor_body) 

    } 

 

    declare_fork_actors(reactor_member) 

 

Every reactor translates into one which receives the corresponding request message 

class, and an initial statement is injected which defines a local variable initialized to the 

request’s payload so the request message itself is directly accessible by return 

statements. 

 

translate_stmt(return_statement(return_value)) 

= 

    { 

        Response responseMessage = new Response(requestMessage); 

        responseMessage.value = return_value; 

        requestMessage.sendReply(responseMessage); 

        return; 

    } 

 



© Tristan Aubrey-Jones 2008. 23

 

Finally every return statement translates as above, sending a response message to the 

requesting actor. 

 

Fork blocks 

 
The fork block is a powerful extension to the language, allowing multiple expression 

actors to be invoked concurrently, and a “continuation” block to execute when all of the 

invocations have completed. They are realised using delegate actors which wait for 

responses, executing their bodies when all the responses have been received. Thus every 

fork primarily translates into an actor class, with its local variables translated into field 

members, and with reactors to receive response messages. These classes are nested 

within one another in the same hierarchy as the original reaction, so that a fork defined 

within another fork can access and modify variables in higher scopes. A primary 

delegate actor is generated for every reaction that contains forks, to contain the message 

field and to send the actor a message when its forks have completed, preventing further 

reactions executing until it has done so. 

 

declare_fork_actors(fork_statement(fork_id,  

                    statement_1, ..., statement_n, block), container_name) 

= 

    aclass-fork_idForkActor-{ 

        container_name-OWNER_RECEPTIONIST 

        int-MSG_WAITING_COUNT; 

        int-FORK_WAITING_COUNT; 

 

        declare_local_vars(block) 

        declare_local_vars(statement_1) 

        ... 

        declare_local_vars(statement_n) 

 

        public-fork_idForkActor(final-container_name-OWNER_RECEPTIONIST) 

        { 

            this.OWNER_RECEPTIONIST-=-OWNER_RECEPTIONIST; 

            this.MSG_WAITING_COUNT-=-count(statement_1,-...,-statement_n); 

            this.FORK_WAITING_COUNT-=-count_forks(block)+1; 

        } 

 

                     For every unqiue type of expression actor referenced in statement_1, ...,  statement_n: 

        declare_fork_reactor(expactor_type_1, statement, ..., statement) 

        ... 

        declare_fork_reactor(expactor_type_n, statement, ..., statement) 

 

        void-continue()-{ 
            try-{ 

                translate_fork_body(block) 

            }-finally-{ 

                this(new-ForkDone()); 

            } 

        } 

 

        public-react-(ajava.runtime.ForkDone-d) { 

            FORK_WAITING_COUNT--; 

            If-(FORK_WAITING_COUNT-<=-0)-done(); 

        } 

        void-done()-{ OWNER_RECEPTIONIST-<---new ajava.runtime.ForkDone();-} 

 

        declare_fork_actors(block, fork_idForkActor) 

    } 
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These delegate actors contain the variables MSG_WAITING_COUNT and FORK_WAITING_COUNT 

which are initialized to the number of expression actor invocations, and the number of 

nested forks respectively. These decrement whenever a response is received from an 

expression actor, or a ForkDone message from a nested fork actor. When all of the 

responses have been received the ‘continue’ method is invoked containing the fork’s 

translated body and when this continuation and all child forks have completed it returns 

a ForkDone message to its parent fork actor. Each of these fork actors include a reactor 

for each of the possible response message type and assigns the result values to the 

correct fields. These reactors differentiate between invocations based on the unique 

request id numbers they were sent with. 

 

translate_stmt(fork_statement(fork_id, statement_1,..., statement_n, block)) 

= 

    fork_id _fork_id = new fork_id(OWNER_RECEPTIONIST); 

    translate_fork_stmt(_fork_id, statement_1, 1) 

    translate_fork_stmt(_fork_id, statement_2, 2) 

    ... 

    translate_fork_stmt(_fork_id, statement_n, n) 

translate_expactor_call(fork_id, method_invocation_expression(id,  

                        arg_1, ..., arg_n), num) 

= 

    id <-- id.Request.create(fork_id, num, arg_1); 

 

Fork blocks themselves translate directly as above, into the instantiation of the relevant 

delegate actor and a request message transmission for every actor expression invocation. 

These request messages define the caller as the delegate actor so that it receives the 

response messages.  

 

Condition reactions 
 

Condition reactions perform a reaction when a certain condition is true. They are not 

triggered when the condition becomes true, but whenever a reactor completes and the 

condition still holds. Condition reactors translate into standard reactors which end 

immediately if the condition is false. 

 

translate_member(when_reactor_member(condition, reactor_number,  

                 block), actor_body) 

 

    protected class reactor_numberCondition {} 

 

    translate_member(reactor_member( 

         reactor_numberCondition, msg, 

         reactor_number, block)) 

 

At the end of every reaction a number of statements are inserted to evaluate the 

condition for each condition reactor and when true send a message to itself. 

 

create_condition_checks(actor_body(member_1, ..., member_n)) 

= 

    create_condition_checks(member_1) 

    ... 

    create_condition_checks(member_n); 
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create_condition_checks(when_reactor_member(condition,  

                        reactor_number, block)) 

= 

    if ( condition ) this <-- new reactor_numberCondition(); 

 

Actor events 

 
Actor events are public members which can have multiple subscriber actors to which it 

relays messages published. As the minimal language semantics allow public final actor 

fields, because they cannot change and can only be accessed by message passing, events 

are implemented as public final actors. Thus every event that is declared can be 

translated as follows: 

 

translate_member(event_member(actor_interface, event_id), actor_body) 

= 

    public final Event<actor_interface> event_id  

        = new Event<actor_interface>(); 

 

These event actors receive any message and multicast it to all their subscribers. An 

example implementation of an event actor can be found in Appendix F. Subscribing and 

unsubscribing actors is achieved using the “+=” and “-=” operators respectively, which 

translate into sending subscribe and unsubscribe messages. 

 

translate_stmt(assignment_expression(op, lhs, rhs)) 

= 

    If lhs is instanceof Event then:  

        If op is “+=” then: 

     lhs <-- new Event.Subscribe(rhs); 

        Else if op is “-=” then: 

     lhs <-- new Event.Unsubscribe(rhs); 
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5 Translator Implementation 
 

A prototype translator has been implemented which translate the actor language source 

files into Java source. It was developed using an iterative and incremental software 

development process as the system was naturally structured into clearly defined 

compilation phases that could be developed incrementally. This chapter describes the 

design, implementation and testing of this translator. 

5.1 Translator Design 
 

The system requirement is to take files written in the actor language and translate them 

into Java source which can be compiled by the Java compiler and executes with the 

correct behaviour. The system is for experimentation and demonstration purposes only 

and so is required to translate correct input into correct output only and is not required to 

consistently detect incorrect input. 

 

 
[Figure 5: Translator architecture component diagram.] 
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[Figure 6: Translator process model diagram.] 
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The front end contains three sub-components: the lexical analyser which tokenises the 

input file into a stream of terminal symbols, the syntactic analyser which parses this 

stream into an abstract syntax tree, and the contextual analyser which decorates this tree 

with semantic information. The abstract syntax tree produced by the parser uses the 

Visitor pattern to allow the analysis and translation phases to traverse every node of the 

tree. Figure 6 demonstrates how this front end analysis stage must be repeated for each 

input file, such that symbol tables exist for each declared class before translation 

commences.  

 

The back end takes a decorated syntax tree and progressively translates it into its Java. It 

then traverses the finished syntax tree serializing it into Java source code. As all of the 

language extensions can be translated into the minimal language, translation has been 

split into two stages as shown in figure 6: the first translating all of the language 

extensions into features of the minimal language, and the second translating the minimal 

language into plain Java. Translation of the minimal language can be achieved in a 

single pass, but translation of the language extensions requires the following passes: 

 

1. Translates expression actors into normal actors with request and response 

messages. 

2. Refactors all sequential actor invocations into nested fork blocks. 

3. Translates fork blocks into delegate actor definitions. 

 

5.2 Runtime Library 

 

In addition to the translator itself a class library provides the foundation for the 

translated actor classes, and a means to bootstrap actor programs. The classes were 

designed as a by-product of the minimal language translation rules because their 

interfaces and behaviours were decided as the translation rules were codified. 

 

The essential class is the ActorBase class, an abstract base class containing a message 

queue and the internal functions needed for an actor. An implementation of this class 

could have its own thread and a message loop which polls the queue for pending 

message, one advantage being that programs execute in a very predictable way. 

However this does command a large overhead and means that actors can never be 

garbage collected. Another implementation could use the ExecutorService class to 

provide a global thread pool which is referenced by every actor, such that whenever an 

actor has messages pending it requests some thread time and gets serviced by any free 

thread in the pool. This has the advantage that the program will only use an optimal 

number of operating system threads, but most importantly whenever an actor object is no 

longer referenced by any it can be garbage collected just like any other object. This 

implementation was used and is listed in Appendix E. 

 

5.3 Translator Implementation 

 

The translator was implemented in Java, using the JFlex and CUP tools as per the 

design. The parser takes a list of the source files (with the extension “.ajava”) on the 

command line and outputs a Java file with the same name for each. Implementation 

started with the lexical analysis, parsing and semantic analysis and then moving onto the 
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minimal language translator and code emission. The runtime class library was 

implemented as the translation phases were being developed, such that essential 

functionality was fully implemented before further extensions were attempted. Thus 

each phase was successively implemented, integrated and tested and the translations for 

the language extensions were left to the end. The complete prototype is implemented in 

16,000 lines of Java code and additional parser generator and lexer source files with 116 

non-terminals and 114 terminal symbols respectively. 

 

As per the contingency plan some of the language extensions have been omitted from 

the implementation, such that a working cut-down translator exists. Support for 

condition reactors, actor events and the message shorthand have thus been omitted 

though the translator correctly handles fork blocks, expression actors and their 

invocations. 

 

Furthermore the translator performs only very limited semantic checks due to the 

complexity of their implementation. To perform full type error checking it would have 

been necessary to open and parse Java ‘.class’ and ‘.jar’ files to access external class 

definitions and so the translator simply returns a warning if a type is referenced that 

cannot be resolved. This is not critical as the java compiler detects any type conflicts and 

syntax errors. Similarly semantic verification of linear types and concurrent forks have 

not been implemented. In short the prototype translator produced is quite sufficient to 

provide a platform for further investigation, but would not be suitable for commercial 

use.  

5.4 Testing 

 

The translator is required to take a well formed actor language source file and output a 

well formed Java source file by correctly applying the language translation rules, but the 

translator’s reaction to malformed input is not defined as a requirement and need not be 

tested. During development, the system was incrementally tested by taking well formed 

source files, and inspecting the translator’s output for each. Once this develop/test cycle 

was complete, and the translator fully implemented, structured testing was performed, 

using programs that make use of the full language feature set. For one such program see 

Appendix E. These were translated and the resultant Java, compiled, executed, and any 

errors found were investigated and the relevant code corrected. The Java compiler itself 

served to detect many programming mistakes, as most bugs led to invalid syntax or 

semantics in the output files, rather than incorrect behaviour such that once the output 

compiled correctly it usually behaved correctly. 
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6 Evaluation and Findings 
 

In order to evaluate the language, some example programs have been written, and tested 

using the prototype translator. The ease with which the programs could be written and 

the desired functionality achieved, provides a useful aid to the evaluation of the 

successfulness of the language, and the usefulness of its features.  

6.1 Dining Philosophers 

 

To evaluate the language’s ability to provide clear 

and safe mechanisms to achieve complex inter-

process communication, a solution to the classic 

dining philosopher’s problem has been 

implemented (see Appendix F). A common 

solution to the problem is to only allow a 

philosopher to pick up both forks simultaneously 

so he can only pick them up if both neighbours 

aren’t eating. In programming languages that use a 

shared-variable approach to IPC, a mutual 

exclusion semaphore must be carefully used to 

ensure that no two philosophers can 

simultaneously obtain or return forks, and a 

semaphore for each philosopher is used to block, until its neighbours make them 

available [36]. This method is far from transparent and so is prone to subtle but serious 

programming errors. 

 

The message passing approach used in this language, vastly improves the 

understandability of the code, and is therefore less prone to errors. In the implementation 

a central ‘table’ actor keeps track of whether each philosopher is thinking, hungry or 

eating, and provides a common place to hold unused forks. This central actor acts like a 

monitor as no two messages can be received simultaneously and so has the same effect 

as the mutex semaphore. When a philosopher actor stops thinking, it sends an ‘IsHungry’ 

message to the table, which marks that philosopher as hungry, and if both forks are 

available passes them both to the philosopher, in a single MoveForks message. When the 

philosopher receives the forks it begins to eat, and when it finishes it passes them both 

back to the table. Thus instead of a critical region to ensure both forks are picked up at 

the same time, and a complex method using semaphores to block and wakeup waiting 

philosophers, philosophers receive both forks simultaneously in a single message, and 

return them in the same way. 

 

Forks are implemented as linear objects, and so can be safely moved without fear of 

synchronization problems. On shared memory architectures these linear fork objects are 

passed by reference, giving the same performance that a semaphore based 

implementation would give, but with far better understandability. Furthermore the 

program could still be realised in a distributed way, as the fork passing is not reliant on 

shared variable access. Thus this language makes inter-process communication far more 

transparent, allows programs to be distributed without modification, and when shared 

memory is available gives the same performance as a semaphore based system. 
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6.2 Parallel Quicksort 

 

The most common reason for using parallelism is when a large problem needs to be 

solved, parts of which can be performed in parallel. A simple example is the sorting of 

an array of integer values. The “Quicksort” algorithm does this using a divide-and-

conquer technique to recursively partition a list, sorting the parts and merging them back 

together. Because of its divide and conquer nature, the algorithm naturally lends itself to 

parallel execution, as once partitioned any two parts may be sorted independently, and 

thus concurrently.  

 

If an array was to be sorted in parallel on a distributed network, the array would have to 

be copied around, but as this programming language is aimed at shared memory 

architectures, an in-place algorithm is possible. A number of classes that police access to 

arrays have been implemented that allowing them to be temporarily divided up and 

merged back together efficiently, as the underlying array remains the same. In the actor 

language these classes are linear types. Using this virtual array distribution, two 

implementations of parallel in-place Quicksort have been written, one in plain Java and 

the other in the actor language, listed in Appendix F. Both implementations partition the 

array until the array is less than a given size, and then sorts the parts sequentially. The 

Java version does this by explicitly implementing a thread which spawns more threads, 

blocking until its child threads are complete. The actor version implements an 

expression actor which receives an array, partitions it, and invokes two new actors in 

parallel using a fork block. 

 

Both implementations use the same Java helper functions but the actor implementation 

requires half the number of lines of code as the plain Java. This is due to the fact that 

Java provides no means to execute two functions in parallel. Doing this in Java requires 

coding a thread class with fields, and a constructor to hold any arguments, and further 

fields and accessors for any result. The expression actor, and fork constructs provide a 

much more concise means of doing this as they can be invoked with a parameter 

message, and return a result value. Furthermore unlike threads which once finished 

cannot be re-used, an actor can return a value and be invoked again and again 

indefinitely. These code overheads combined with the need to catch certain exceptions 

when using Java threads show the actor language can be much more concise. 

 

Of course fewer lines of code, doesn’t imply faster execution. The implementations were 

benchmarked with arrays of varying sizes on a single core and a multi-core architecture, 

and the results are listed in Appendix F. The time taken to sort the same random array 

was compared using the different implementations. A small array of 10,000 elements 

was fastest using sequential quick sort on both architectures, but the actor 

implementation was still considerably faster than the Java implementation (see figure 7). 

It wasn’t until large arrays of a million elements that the parallel algorithms on the 

multi-core architecture began to really outperform the sequential. With an array of 1-

million elements on a 6-core machine the sequential implementation took 1s to sort the 

array, the actor implementation took just over 0.6s, and the Java one just below 0.7s. 

This is clearly not a six-fold speedup although this is probably largely due to the large 

amount of memory access required in sorting, and because it was difficult to persuade 

the operating system’s scheduler to make the process run using multiple cores.  
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[Figure 7: Parallel Quicksort for 10,000 elements run on single-core architecture] 

 

It was surprising that the actor implementation consistently outperformed Java threads. 

This is due to the fact that the actor runtime library used for the benchmarks used a 

thread pool and so it created far fewer threads, and those that were can be re-used. 

Furthermore there is no need to have countless threads sleeping or busy waiting for 

incoming messages, instead actors request call-backs only when they need a finite chunk 

of execution time. Thus the scheduling is handled implicitly; a far more appropriate 

model for a system with lots of regularly interacting agents. In this scenario the overhead 

to initialize, schedule and clean up the threads made a significant difference.  

 

Finally this program demonstrates the power of linear types. The Java implementation 

provides no means to prevent programmers accidentally modifying the same array 

partition concurrently. Making these array objects linear means that this interference 

becomes impossible and is prevented at compile type rather than be discovered by 

intermittent erroneous behaviour. 

6.3 Calculator App 

 

Programs are rarely batch 

computational tasks anymore, but are 

interactive applications, which may 

consist of many interacting modules 

and components. Thus, it is not 

sufficient to just demonstrate the 

suitability of a language to 

implement sorting algorithms and 

IPC but the language must be good 

at expressing interactive event driven 

applications. 

 

To evaluate how well the language 

does this a small calculator program 

has been written which can be found 

in Appendix F. The application is 

split into a number of modules, each of which is implemented as an actor class (see 

figure 8). The whole application makes heavy use of event actors, even though the 

syntactic sugar for defining them implicitly was not implemented.  

 

 

This program highlights some real strengths of the language and some areas to revise. 

One advantage was the ability to make modules very loosely coupled. In the example the 

calculator actor creates the other actors and when it does so subscribes the actors to 

events accordingly. This also allows programs to be easily extended as multiple actors 

can subscribe to an event. Even more powerful, is the ability to subscribe events to other 
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events, chaining them together. In this way modules can be very independent but can be 

linked up using events and common message types. This could even be programmed 

graphically, making event subscriptions like wires between actors like in Berkley’s 

“Actor-oriented design” in Ptolemy II [24]. 

 

 
[Figure 8: Activity diagram showing modular structure of Calculator App] 

 

Although the ability to flexibly link actors together proved to be a very natural way to 

implement modular applications, the expression actor extension had practical 

limitations. Expression actors were originally devised by Agha [8] to allow functions on 

arguments to be evaluated using a standard request-response protocol. This was shown 

to be useful in the sorting example, however for actors that represent persistent objects 

rather than function on arguments it is often necessary to query the state of multiple state 

variables separately. A future modification to the extended language should therefore 

allow different reactors to return different types, rather having one expression type that 

all reactors must return. This could be very simply implemented using multiple Response 

message types and would greatly improve usability. Some reactors could even be 

marked as void so that they could be invoked either synchronously or asynchronously. 

6.4 Conclusion 

 

The aim of this project was to begin the development of a language for implicitly 

parallel programming, using a natural and understandable notation that would be 

familiar to object oriented programmers, specifically for use on multi-core systems. This 

objective has been achieved, or even exceeded as the metaphor has been refined, a new 

language developed and a working prototype compiler implemented such that example 

programs have been compiled and executed using multiple processors. 

 

Initial creative work demonstrated the usefulness of a language which defined agents 

which communicated by message passing, and research into the Actor model highlighted 

previous limitations. The model failed to allow the adequate sharing and locking of 

objects, but this has been overcome in the language using linear types. Thus unlike other 

Actor programming languages like SALSA [26], passive objects can be transferred 

between actors, without needing to be copied, a feature that has huge performance 

advantages that other message passing systems lack, as well as providing a neat way to 

avoid the use of synchronization constructs and mutual exclusion locks. As all inter-
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actor communication is via message passing the interaction is far clearer, common 

synchronization bugs are eliminated, and programs could be distributed virtually without 

modification. In fact the use of linear types guarantees safety from interference 

problems, and forces correct coding in this respect at compile time. 

 

The language also succeeds in providing a familiar environment for object oriented 

programmers. By building on Java and introducing “actor classes” the learning curve is 

dramatically reduced and defining actor behaviours declaratively using “reactor 

members” vastly improves the language’s clarity over other languages like 

ActiveCSharp [37] and Scala [38] that use message loops and blocking receive 

statements. It also defines clean interfaces for valid inter-process interaction and allows 

meaningful inheritance. This encourages modular design and dramatically reduces 

coupling. Actor events make this approach even more convenient as actors can define 

public outputs to which messages are published. Thus modules can be developed 

independently and interconnected externally much like linking wires between electronic 

components. As was found in the calculator example this leads to a loosely coupled 

system with high cohesion and a very clear structure as data flows between components. 

 

Most importantly the language successfully provides means for implicit parallelism. 

The hybrid approach combining object oriented programming, with the actor model, and 

linear typing has resulted in a powerful and yet understandable language. Though 

languages that support various methods of implicit concurrency exist, they don’t tend to 

use such a familiar grammar, and are often aimed at large distributed computation rather 

than general purpose multi-threaded applications. Overall the language developed here 

provides a good solution to the increasing problem of programming multi-core 

architectures. 

 

Two years ago a multidisciplinary group of Berkeley researchers met to discuss the 

implications of the emerging increase in parallel architectures and made 7 

recommendations regarding future research in this field [28]. These included suggesting 

that the next generation of programming frameworks must be “human-centric”, 

“independent of the number of processors” and “naturally parallel” as architectures 

advance towards 1000s of cores per chip. The language developed in this project follows 

these principles and successfully contributes towards the achievement of a naturally 

parallel programming methodology. Most notably it has demonstrated that the union of 

the Actor model and linear typing provides a compelling new model for implicit 

concurrency. The hybrid is vastly more understandable and robust than shared memory 

communication but overcomes many of the inefficiencies of previous message passing 

systems. Though future revisions could enhance and refine the language, this project has 

successfully overcome previous limitations and has produced a new and innovative 

prototype to act as a springboard for further research. 

6.5 Further Work 

 

There is a large potential for further work arising from this project. As was previously 

discussed the extended language should be revised such that individual reactors can 

specify their own return types. On an implementation level the translator prototype could 

be refined and extended to perform semantic checking and to implement the remaining 

language. 
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A language concept that is worth consideration, but has been omitted for simplicity is 

the notion of an actor’s locality. Real world objects don’t just have connections to other 

objects, but they exist at locations proximate to other objects. The ability to send 

messages to all of an actor’s neighbours for example, without needing individual 

references to each of them would be very useful for simulation especially.  

 

Investigation could also be made into code optimization performing control flow 

analysis to serialize subsections of actor systems, translating them into sequential code. 

Programs could be written as actor systems, partitioned into independent actor groups, 

and each translated into optimized sequential code. Further research could be made into 

just-in-time compilation, such that programs could be “autotuned” [28] to the number of 

processors on the target system. 

 

Finally further work into distributing computation would be helpful. Many grid 

frameworks exist but, making distribution an implicit part of a general purpose language 

would have huge advantages. This one language could be used to develop local 

applications, and distributed ones with a common syntax. Areas to investigate would 

include load balancing, and how to globally address actors irrespective of their locations. 

One interesting possibility would be to have 3 levels of actor identification: a global 

identifier, a locality within the program, and a network locator. Further work on this 

language could therefore produce a very useable and powerful notation for local 

multiprocessor systems and huge distributed systems alike, whilst providing competitive 

performance in both situations. 
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Appendix A. 

Initial Syntax Experiment 

 

The example below introduces the basic concepts of the language but was designed prior 

to research on the Actor model, and so contains “observers” (the view keyword) which 

are not appropriate in potentially distributed parallel computing. This example was an 

experiment looking at whether user interactive applications are better written using this 

model, due to their high emphasis on events. 

 
 

// Calculator System 

// ------------------------------ 

// a demo causal system, describing a pocket 

// calculator program. it must be noted that this describes 

// a system, with interactions between objects, rather than  

// an explicit algoritmn. there is a freedom into how and where,  

// the object's are stored and executed which allows distribution, 

// and concurrency. 

 

// a notification definition, used throughout the  

// system. details a single digit in the range 0..9 

notification DigitNotification: NotificationBase  

{ 

 int Digit; 

} 

 

// NumberBox object class definition. contains a complete 

// definition of the object's type, with instance and state variables, 

// externally viewable observers, constructors, and reactions to notifications. 

class NumberBox: TextBox 

{ 

 // notification definitions. these are public 

 // but are defined here as they are used by this class 

 // and it's ancestors 

 notification SetNumber { double number; } 

 notification Clear {} 

 notification AppendDot {} 

 

 // this is a state variable which, 

 // can be changed in reaction to notifications, 

 // and is private like all instance variables. 

 state double number; 

  

 // an observer, for externally viewing a state 

 // or instance member. 

 view double Number { return number; } 

  

 // a constructor 

 cons (double number) { 

  base(Double.ToString(number)); 

 } 

  

 // reactions 

 // maps causes to effects 

  

 // reacts to set number notifications 

 react (SetNumber) { 

  // send a new TextBox.SetText notification to "this" 

  TextBox.SetText(text=Double.ToString(e.number)) -> this; 

 } 

  

 // reacts to a digit notification, by appending the digit 

 // to the current number. 

 react (DigitNotification) { 

  SetNumber(number = (this.number * 10) + e.digit) -> this; 

 } 

  

 // clears the number to 0.0 

 react (Clear) { 
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  SetNumber(number=0.0) -> this; 

 } 

  

 // reaction execution: 

 // after all reactions from ancestors are executed 

 // each of their individual changes are applied  

 // and the object becomes observably different, and events 

 // are raised, so the reaction seems atomic. 

} 

 

// A button with a single digit on it. 

class DigitButton: Button 

{ 

 // cannot be changed after constructor 

 final int digit; 

  

 // provides a view, to observe the digit 

 // member. observer's cannot modify the objects 

 // state or raise any events; though they may invoke 

 // other observers and static methods. 

 view int Digit { return digit; } 

  

 // creates the button 

 cons (int digit) { 

  // init base (using static method) 

  base(Int.ToString(digit)); 

   

  // set the digit 

  this.digit = digit; 

   

  // subscribe to Clicked events 

  this.Clicked += this; 

 } 

  

 // event (DigitNotification), raised when the button is clicked 

 // and details the digit clicked (same as Digit). 

 event DigitClicked; 

  

 // reacts to clicked notifications (which say that this has 

 // been clicked) from itself, by raising the DigitClicked event. 

 react (ClickedNotification) { 

  // if this event is from this object 

  if (e.Sender == this) { 

   // creates and inits a new digit notification, and 

   // raises the DigitClicked event with it. 

   DigitNotification(Digit=this.digit) -> DigitClicked; 

  } 

 } 

  

} 

 

// A set of ten digit buttons from 0..9. 

class DigitButtons: Panel 

{ 

 // instance variable. stays the same for an 

 // instance once it has been set in the constructor 

 final DigitButton[] buttons; 

  

 // parameterised observer 

 view DigitButton Button[int digit] { return buttons[digit]; } 

  

 // constructor 

 cons () { 

  // make buttons 

  buttons = new DigitButton[](); 

   

  // forevery does not enforce order 

  // does every in a list. 0:1:9 - shorthand for 

  // 0,1,2,3,4,5,6,7,8,9 - start:step:end like in matlab. 

  forevery (int digit in 0:1:9) { 

   // creates the button 

   DigitButton btn = new DigitButton(i); 

   btn.DigitClicked += this; 

   buttons[digit] = btn; 

    

   // call an init method 

   // to add the widget to the panel 
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   this.AddWidget(btn); 

  } 

 } 

  

 // an event that raises a DigitNotification can be subsribed to which 

 // is raised when any digit button is pressed. events are untyped, so that 

 // any notifications can be passed to them. 

 event DigitClicked; 

  

 // a reaction to a digit notification 

 // (just passes it to the DigitClicked event) 

 // could have just subscribed the event for shorthand). 

 react (DigitNotification) { 

   e -> DigitClicked; 

 } 

} 

 

// notification sent when an operator button is clicked 

notification OperatorNotification  

{ 

 string Operator; 

} 

 

// an operator button 

class OpButton: Button 

{  

 // the operator character +,-,= etc... 

 final string operator; 

  

 // raised when the button is clicked. 

 event OperatorClicked; 

  

 // constructor 

 cons (string op) { 

  base(op); 

  this.operator = op; 

  this.Clicked += this; 

 } 

  

 // when clicked, raise operator clicked event. 

 react (ClickNotification) { 

  OperatorNotification(Operator=this.operator) -> OperatorClicked; 

 } 

} 

 

// A panel with digit buttons, arithmetic operators 

// on it, and an evaluation button on it. 

class ButtonPad: Panel 

{ 

 // instance variables, which can be  

 // set in the constructor, but which are  

 // immuttable once the object has been created 

 final DigitButtons digits; 

 final OpButton plus, minus, equals; 

  

 // raised when any of the buttons on the pad 

 // is clicked. 

 event ButtonClicked; 

  

 // the default constructor 

 cons () { 

  // create children 

  digits = new DigitButtons(); 

  plus = new OpButton("+"); 

  minus = new OpButton("-"); 

  equals = new OpButton("="); 

  this.AddWidget(digits); 

  this.AddWidget(plus); 

  this.AddWidget(minus); 

  this.AddWidget(equals); 

   

  // subscribe an event to button pressed events 

  // so that notifications, are published to all  

  // who subscribe to that event 

  digits.DigitClicked += ButtonClicked; 

  plus.Clicked += ButtonClicked; 

  minus.Clicked += ButtonClicked; 
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  equals.Clicked += ButtonClicked; 

 } 

} 

 

// arithmetic logic unit, that actually carries out the  

// computation. (overkill but included for neatness and  

// demonstration of good system design). 

class ALU 

{ 

 // a request for an arithmetic logic  

 // function to be applied 

 notification Request 

 { 

  double A,B; 

  string Operator; 

 } 

  

 // the result is computed and this notification,  

 // containing the result is returned to the request 

 // notification sender. 

 notification Result 

 { 

  double Value; 

 } 

 

 // react to an ALOperation, computing the  

 // result and replying to the sender 

 react (ALU.Request) { 

  // init 

  double result = e.A; 

   

  // apply operation 

  if (e.operation == "+") result += e.B; 

  else if (e.operation == "-") result -= e.B; 

   

  // reply to sender 

  ALU.Result(Value=result) -> e.Sender; 

 } 

} 

 

// A panel with a keypad, and number display. 

class CalculatorPanel: Panel 

{ 

 // permenant members 

 final ButtonPad buttons; 

 final NumberBox number; 

 final ALU alu; 

 

 // state variables 

 state string operator; 

 state double mem; 

 

 // the default constructor 

 cons () { 

  // init state  

  mem = 0.0; 

  operator = "+"; 

  

  // create children 

  number = new NumberBox(); 

  buttons = new ButtonPad(); 

  alu = new ALU(); 

   

  // call init procedures 

  this.AddWidget(number); 

  this.AddWidget(buttons); 

   

  // listen to button presses 

  buttons.ButtonClicked += this; 

 } 

  

 // reactions - mapping between causes and effects, 

 //             notifications and responses. 

  

 // when a button is pressed, append to number display 

 react (DigitNotification) { 

  e -> number; 
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 } 

  

 // when an operator is clicked 

 react (OperatorNotification) { 

  if (e.Operator == "=") { 

   // compute result 

   ALU.Request(A=mem, B=number.Number, Operator=e.Operator) -> alu; 

  } else { 

   // remember number and operator 

   mem = number.Number; 

   operator = e.Operator; 

    

   // clear number display 

   NumberBox.Clear() -> number; 

  } 

 } 

  

 // when the result has been computed, show in display 

 react (ALU.Result) { 

  NumberBox.SetNumber(number=e.Value) -> number; 

 } 

} 

 

// the main class. an instance of this is created 

// using the default constructor, when the system 

// starts. this conatins the causal system which is 

// then simulated. 

main class CalculatorApp 

{ 

 // the actual calculator UI. 

 final CalculatorPanel calcPanel 

  

 // constructor 

 cons () { 

  calcPanel = new CalculatorPanel(); 

 } 

} 
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Appendix B. 

Resource sharing experiments 

 

The examples below investigate ways in which mutual exclusion, and resource sharing 

can be achieved in actor systems, without introducing any further concepts so that all 

resources must be actors. 

 
// 2 Queue Example 

// --------------------- 

 

actor Queue 

{ 

 // queue object (not active object) 

 state QueueImplemention queue; 

  

 cons () { 

  queue = new QueueImplemention(); 

 } 

  

 notification enqueue { Object o } 

 notification dequeue { Actor a } 

 notification dequeue_reply { Object o } 

 notification dequeue_to { Queue q } 

  

 // add to queue 

 react (enqueue) { 

  this.queue.pushtail(o=e.o); 

 } 

  

 // remove from queue 

 react (dequeue) { 

  Object v = this.queue.pophead(); 

  dequeue_reply(o=v) -> e.a; 

 } 

  

 // move from here to another queue 

 react (dequeue_to) { 

  Object v = this.queue.pophead(); 

  enqueue(o=v) -> e.q; 

 } 

} 

 

actor Demo 

{ 

 Queue q1, q2; 

 

 cons () { 

  q1 = new Queue(); 

  q2 = new Queue(); 

 } 

  

 react (init) { 

  Queue.enqueue( 1234 ) -> q1; 

  Queue.dequeue_to( q2 ) -> q1; 

 } 

} 

 

// Problem: In some cases it might matter that there is a  

// period whilst queue 1, and queue 2 are both empty 

// (while message is in transit) 

 

// 2 Queue Example - with locking 

// ------------------------------- 

 

actor Queue 

{ 

 // queue object (not active object) 

 final QueueImplemention queue; 

  

 // indicates is not currently readable 
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 state boolean locked; 

 state NotificationBuffer buffer; 

  

 cons () { 

  queue = new QueueImplemention(); 

  buffer = new NotificationBuffer(); 

  locked = false; 

 } 

  

 notification enqueue { Object o; Actor rsvp; } 

 notification enqueue_done {} 

 notification dequeue { Actor a } 

 notification dequeue_reply { Object o } 

 notification dequeue_to { Queue q } 

  

 // add to queue 

 react (enqueue) { 

  // still allowed to enqueue, even when  

  // read locked. 

  this.queue.pushtail(e.o); 

  enqueue_done() -> e.rsvp; 

 } 

  

 // when has been added to other enqueue has done 

 react (enqueue_done) { 

  if (locked) { 

   // unlock and process buffered messages 

   locked = false; 

   for-all-in(buffer) -> this; 

  } 

 } 

  

 // remove from queue 

 react (dequeue) { 

  if (!locked) { 

   Object v = this.queue.pophead(); 

   dequeue_reply(o=v) -> e.a; 

  } else { 

   // if locked, buffer request 

   buffer.addmessage(e); 

  } 

 } 

  

 // move from here to another queue 

 react (dequeue_to) { 

  if (!locked) { 

   Object v = this.queue.pophead(); 

   enqueue(o=v,rsvp=this) -> e.q; 

   locked = true; 

  } else { 

   // if locked buffer request 

   buffer.addmessage(e); 

  } 

 } 

  

} 

 

actor Demo 

{ 

 Queue q1, q2; 

 

 cons () { 

  q1 = new Queue(); 

  q2 = new Queue(); 

 } 

  

 react (init) { 

  Queue.enqueue( 1234 ) -> q1; 

  Queue.dequeue_to( q2 ) -> q1; 

 } 

} 

 

// Solution: Buffers queue 1's read (dequeue) requests, whilst queue 

// 1 is inconsistant. Then when confirmation comes that it is added 

// to queue 2, we process buffered messages. 

// Advantages: Only queue 1 needs to be locked, to prevent inconsistancy. 

//             Even whilst locked we can enqueue onto queue 1, we just cant 
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//               dequeue 

 

 

Producer/Consumer Actor Example 

--------------------------------- 

// cheats somewhat as the message buffering removes 

// any need for an explicit buffer, though one can be  

// implemented easily enough, and both producer and  

// consumer comminicate via it. 

 

actor Producer 

{ 

 cons () { } 

  

 notification next { Consumer c } // requests next element 

 notification element { Producer p; Object value; } // sends an element 

  

 react (next) { 

  // produce new element, and send to 

  // the consumer 

  element(p=this,value=new Element()) -> e.c; 

 } 

} 

 

actor Consumer  

{ 

 cons () {} 

  

 // starts consuming from this producer 

 notification add_producer { Producer p; } 

  

 react (add_producer) { 

  // send 10 "next" messages to producer 

  // (maintains buffer of 10 elements therefore) 

  Consumer.next(c=this) x 10 -> e.p; 

 } 

  

 react (Producer.element) { 

  // consume it... yum yum yum 

  // send request for another 

  Consumer.next(c=this) -> e.p; 

 } 

} 

 

main actor PCDemo 

{ 

 final Producer p1, p2; 

 final Consumer c1, c2, c3; 

  

 cons() { 

  p1 = new Producer(); 

  p2 = new Producer(); 

  c1 = new Consumer(); 

  c2 = new Consumer(); 

  c3 = new Consumer(); 

 } 

 

 // occurs on startup, after cons 

 react (init) { 

  // add producer 1 to consumers 

  Consumer.add_producer(p=p1) -> c1, c2, c3; 

  // consumer 1, can also consume from p2 

  Consumer.add_producer(p=p2) -> c2; 

 } 

} 

 

// Alternative using Semaphores 

// ----------------------------- 

 

semaphore mutex = 1 

semaphore full = 0 

semaphore empty = BUFFER_SIZE 

 

procedure producer() { 

    while (true) { 

        item = produceItem() 

        down(empty) 
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        down(mutex) 

        putItemIntoBuffer(item) 

        up(mutex) 

        up(full) 

    } 

 } 

 

procedure consumer() { 

    while (true) { 

        down(full) 

        down(mutex) 

        item = removeItemFromBuffer() 

        up(mutex) 

        up(empty) 

        consumeItem(item) 

    } 

} 

 

// Alternative using Monitors 

// ---------------------------- 

 

monitor ProducerConsumer { 

     

    int itemCount 

    condition full 

    condition empty 

     

    procedure add(item) { 

        while (itemCount == BUFFER_SIZE) { 

            wait(full) 

        } 

         

        putItemIntoBuffer(item) 

        itemCount = itemCount + 1 

         

        if (itemCount == 1) { 

            notify(empty) 

        } 

    } 

     

    procedure remove() { 

        while (itemCount == 0) { 

            wait(empty) 

        } 

         

        item = removeItemFromBuffer() 

        itemCount = itemCount - 1 

         

        if (itemCount == BUFFER_SIZE - 1) { 

            notify(full) 

        } 

         

        return item; 

    } 

} 

 

procedure producer() { 

    while (true) { 

        item = produceItem() 

        ProducerConsumer.add(item) 

    } 

} 

 

procedure consumer() { 

    while (true) { 

        item = ProducerConsumer.remove() 

        consumeItem(item) 

    } 

} 
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Resources as Actors and Linear Types 

 

The examples below compare solutions to common resource sharing problems using the 

possible approaches: variable locking, resources as actors and resources as linear types. 

 
 

public aclass SharedResource { 

    Actor currentActor; 

    Queue grabQueue = new Queue(); 

     

    class Ready { SharedResource resource; } 

    class GrabResource { Actor sender; } 

    react (GrabResource msg) {  

        if (currentActor == null) { 

            currentActor = msg.sender; 

            msg.sender <-- new Ready(this); 

        } else { 

            grabQueue.enqueue(msg.sender); 

        } 

    } 

 

    class ReleaseResource { Actor sender; } 

    react (ReleaseResource msg) { 

        if (currentActor == msg.sender) {  

            currentActor = null; 

            this(grabQueue.dequeue()); 

        } else { 

            grabQueue.remove(msg.sender); 

        } 

    } 

 

    class UseResource { Actor sender; } 

    react (UseResource msg) {  

        if (currentActor == sender) { 

           ... 

        } 

    } 

} 

 
public linear class SharedResource { 

} 

 

public aclass ResourceUser { 

    class SendResource { Actor sender; SharedResource value; } 

    react (SharedResource res) { 

        // use resource 

        ... 

        // return to sender 

        res.sender <-- res.value; 

    } 

} 
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Appendix C. 
 

This appendix lists the full grammar of the language, in Backus-Naur form. Bold names 

are terminal symbols, square brackets signify optional sections, and curly braces 

boundless repetition. The grammar for the minimal language is presented, followed by 

the extended language. 

Minimal Language Grammar 

 
type_declaration ::= modifiers ( actor_class | actor_interface 

| java_class | java_interface ) 

 

actor_class ::= ( aclass | actor ) identifier 

[ extends data_type ] 

[ implements data_type_list ] 

actor_class_body 

 

actor_class_body ::= “{“ { modifiers actor_class_member } “}” 

 

actor_class_member ::= react “(“ data_type identifier “)”  

statement_block | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 

identifier “(“ expression_list “)”  

constructor_block | 

 

data_type identifier  

“(“ parameter_list “)” statement_block 

 

actor_interface ::= ainterface identifier 
[ extends data_type_list ] 

actor_interface_body 

 

actor_interface_body ::= “{“ { modifiers actor_interface_member } 

“}” 

 

actor_interface_member ::=  react “(“ data_type identifier “)” “;” | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 
statement_block ::= “{“ { block_statement } “}” 

block_statement ::= local_variable_declaration | 

 

statement 

 

local_variable_declaration ::= [ final ] data_type 

variable_declarator_list “;” 

 

statement ::= “;” | 

 

statement_block | 

 

if_statement | 
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switch_statement | 

 

return_statement | 

 

break_statement | 

 

expression_statement 

 

if_statement ::= if “(“ expression “)” statement 

[ else statement ] 

 

switch_statement ::= switch “(“ expression “)”  

“{“ { switch_group } “}” 

 

switch_group ::= switch_label { switch_label } 

{ statement } 

 

switch_label ::= case expression “:” | 

 

default “:” 

 

return_statement ::= return expression “;” 

 

break_statement ::= break “;” 

 

expression_statement ::= expression “;” 

 

expression ::= expression1 [ assignment_op expression1 ] 

 

expression1 ::= expression2  

[ “?” expression “:” expression1 ] 

 

expression2 ::= expression3 [ instanceof data_type | 

             { infix_op expression3 } ] 

 

expression3 ::= prefix_op expression3 | 

 

primary_expression postfix_op | 

 

“(“ data_type “)” expression3 

 

primary_expression ::= literal | 

 

new type_name class_instance_creator | 

 

expression4 

 

class_instance_creator ::= arguments | 

 

{ array_indexer }  

[ [] { [] } array_initializer ] 

 

array_indexer ::= “[“ expression “]” 

array_initializer ::= “{“ { expression | array_initializer } “}” 

 

expression4 ::= “(“ expression “)” | 

 

secondary_expression | 

 

expression4 array_indexer | 

 

expression4 “.” secondary_expression 

 

secondary_expression ::= identifier [ arguments ] | 

 

this [ arguments ] | 
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super [ arguments ] 

 

arguments ::= “(“ [ expression { “,” expression } ] “)” 

 

assignment_op ::= “=” | <-- | += | -= | etc... 

  

infix_op ::= “+” | “-“ | “*” | “/” | == | && | etc... 
 

prefix_op ::= ++ | -- | “!” | etc... 

 

postfix_op ::= ++ | -- 

 

 

Extended Language Grammar 

 
type_declaration ::= modifiers ( actor_class | actor_interface 

| message_type | java_class | 

java_interface ) 

 

message_type ::= message identifier “(“ parameter_list “);” 

 

actor_class ::= ( aclass | actor ) identifier 

[ extends data_type ] 

[ implements data_type_list ] 

[ returns data_type ] 

actor_class_body 

 

actor_class_body ::= “{“ { modifiers actor_class_member } “}” 

 

actor_class_member ::= react “(“ data_type identifier “)”  

statement_block | 

 

react-when “(“ expression “)” 

statement_block | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 

 

identifier “(“ expression_list “)”  

constructor_block | 

 

data_type identifier  

“(“ parameter_list “)” statement_block | 

 

event type_name identifier  
{ “,” identifier } “;” 

 

actor_interface ::= ainterface identifier 

[ extends data_type_list ] 

actor_interface_body 

 

actor_interface_body ::= “{“ { modifiers actor_interface_member } 

“}” 

 

actor_interface_member ::=  react “(“ data_type identifier “)” “;” | 

 

type_declaration | 

 

data_type  

field_declarator { “,” field_declarator } 

“;” | 
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event type_name identifier  

{ “,” identifier } “;” 

 

 

 
statement_block ::= “{“ { block_statement } “}” 

block_statement ::= local_variable_declaration | 

 

statement 

 

local_variable_declaration ::= [ final ] data_type 

variable_declarator_list “;” 

 

statement ::= “;” | 

 

statement_block | 

 

if_statement | 

 

switch_statement | 

 

return_statement | 

 

break_statement | 

 

expression_statement | 

 

fork_statement 

 

if_statement ::= if “(“ expression “)” statement 

[ else statement ] 

 

switch_statement ::= switch “(“ expression “)”  
“{“ { switch_group } “}” 

 

switch_group ::= switch_label { switch_label } 

{ statement } 

 

switch_label ::= case expression “:” | 

 

default “:” 

 

return_statement ::= return expression “;” 

 

break_statement ::= break “;” 

 

fork_statement ::= fork “(“ { fork_exp } “)”  

[ statement_block | “;” ] | 

 

fork statement_block 

 

fork_exp ::= local_variable_declaration | 

 

expression_statement 

 

expression_statement ::= expression “;” 

 

expression ::= expression1 [ assignment_op expression1 ] 

 

expression1 ::= expression2  

[ “?” expression “:” expression1 ] 

 

expression2 ::= expression3 [ instanceof data_type | 

             { infix_op expression3 } ] 

 

expression3 ::= prefix_op expression3 | 
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primary_expression postfix_op | 

 

“(“ data_type “)” expression3 

 

primary_expression ::= literal | 

 

new type_name class_instance_creator | 

 

expression4 

 

class_instance_creator ::= arguments | 

 

{ array_indexer }  

[ [] { [] } array_initializer ] 

 

array_indexer ::= “[“ expression “]” 

array_initializer ::= “{“ { expression | array_initializer } “}” 

 

expression4 ::= “(“ expression “)” | 

 

secondary_expression | 

 

expression4 array_indexer | 

 

expression4 “.” secondary_expression 

 

secondary_expression ::= identifier [ arguments ] | 

 

this [ arguments ] | 

 

super [ arguments ] 

 

arguments ::= “(“ [ expression { “,” expression } ] “)” 

 

assignment_op ::= “=” | <-- | += | -= | etc... 

  

infix_op ::= “+” | “-“ | “*” | “/” | == | && | etc... 

 

prefix_op ::= ++ | -- | “!” | etc... 

 

postfix_op ::= ++ | -- 

 

 



© Tristan Aubrey-Jones 2008. 54

 

Appendix D. 
 

This appendix lists the formal translation rules which describe how the minimal 

language translates into Java, and how the language extensions can be translated into the 

minimal language.  

Minimal Language Translation Rules 

 

f0(type_declaration(modifier_1, ..., modifier_n, class_definition)) 

=  

    f12(modifier_1) 

    ... 

    f12(modifier_n) 

 

    f1(class_definition) 

 

Translates irrelevant modifiers (ignoring “linear”) and translates the class definition. 

 

f1(actor_class(name, is_singleton, body, parent,             

               interface_1, ..., interface_n))  

= 

    class name  

    If parent == null: extends ajava.lang.Actor 

    Else:         extends parent  
    implements interface_1, ..., interface_n 

    f2(body, singleton, name) 

 

Translate actor class definition into passive java class definition. If no parent is specified inherits from 

ajava.lang.Actor. 

 

 

f2(actor_class_body(member_1, ..., member_n), is_singleton, name)  

=    

    {  

        f3(member_1) 

        f3(member_2) 

        ... 

        f3(member_n) 

 

        protected void processMessage(ActorMessage msg) { 

            switch (msg.reactorId) { 

                                          For every member that is a reactor: 

                  f4(member_1) 

                  f4(member_2) 

                  ... 

                  f4(member_n) 

                default: super.processMessage(msg); return; 

            } 

        } 

 

                     If ‘is_singleton’ (i.e. keyword was “actor” not “aclass”) then: 

        private static class SingletonHolder { 
            private final static name instance = new name(); 

        } 

        public static name getInstance() { 

           return SingletonHolder.instance; 
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        } 

    } 

     

Translates an actor class body, into a passive java class body. Translates each member directly, then 

creates a processMessage method to invoke the correct reactor for any buffered message, and if it is an 

actor singleton, includes a static instance. 

 

 

f3(reactor_member(message_type, message_id, reactor_number, block)) 

= 

    public void deliver(message_type message_id) { 

        bufferMessage(new ActorMessage(message_id, reactor_number)); 

    } 

 

    protected void react(message_type message_id)  

    f5(block) 

 

Translates a reactor into a private method, and a public deliver method 

. 

 

f4(reactor_member(message_type, message_id, reactor_number)) 

= 

    case reactor_number: 

        react((message_type)msg.payload); 

        return; 

 

Emmits one of the case statements for the processMessage method, such that buffered messages invoke 

the correct reactor. 

 

 

f5(statement_block(statement_1, ..., statement_n)) 

= 

    { 

        f6(statement_1) 

        f6(statement_2) 

        ... 

        f6(statement_n) 

    } 

 

Translates every statement, in a statement block into a java statement.  

 

 

f6(statement)  

= 

Java statements and expressions, other than loops (for, while, do) and the try-catch-finally constructs are 

translated without modification. However assignment expressions that use the ‘<--‘ operator, are 

translated using f7. 
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f7(transfer_expression(lhs, rhs)) 

          If lhs is an actor. 

= 

                 If rhs is a basic type OR rhs is a class creation expression: 

         lhs.deliver(rhs); 

 

                 Else if rhs is of a linear type 

         lhs.deliver(rhs); 

                        If rhs is an identifier expression     

            rhs = null; 

 

                 Else 

         lhs.deliver(rhs.clone()); 

 

          Else, if lhs is an instance of a linear type: 

= 

    lhs = rhs; 

                     If rhs is an identifier expression (make it a destructive read) 

        rhs = null; 

 

Translates message send, and linear object transfer expressions. 

 

f7(identifier_expression(id, parent_expression)) 

= 

    If parent_expression.id refers to a singleton actor class: 

    parent_expression.id.getInstance() 

    Else 

    parent_expression.id 

 

Translates an identifier expression, such that if it refers to the class name of a singleton actor, it invokes its 

accessor method, and otherwise it translates directly. 

 

f1(actor_interface(name, body, parent_1, ..., parent_n) 

= 

    interface name extends parent_1, ..., parent_n 

    f9(body) 

 

Translates an actor interface into a java interface. 

 

 

f9(actor_interface_body(member_1, ..., member_n)) 

= 

    { 

        f10(member_1) 

        f10(member_2) 

        ... 

        f10(member_3) 

    } 

 

Translates an actor interface body, into a java interface body. 
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f10(reactor_signature(message_type, message_id)) 

= 

    void deliver(message_type message_id); 

 

Translates a reactor signature, into a deliver method signature.  

 

f12(modifier) 

= 

          If modifier != “linear” then: 

    modifier 

 

Ignores the linear modifier for the purposes of translation. This modifier is just used for semantic analysis 

purposes. 

 

Extension Translation Rules 

 

translate(actor_class(name, is_singleton, body, parent, return_type,            

          interface_1, ..., interface_n))  

= 

    class name extends parent  

    implements interface_1, ... interface_n 

    translate_actor_body(body, return_type, singleton, name) 

 

Translates an extended language actor class (which may define a return type) into a minimal language 

actor class. 

 

translate_actor_body(actor_class_body(member_1, ..., member_n),  

                     return_type, is_singleton, name)  

=    

    { 

  

           If return_type != null (i.e. is an expression actor) then: 

 

        public static class Response extends ActorResponseMessage { 

            public return_type value; 

            private Response(final ActorRequestMessage request) 

            { 

                super(request); 

            } 

        } 

         

        public static class Request { 

            declare_request_creator(member_1) 

            ... 

            declare_request_creator(member_n) 

        } 

 

        translate_exp_member(member_1) 

        translate_exp_member(member_2) 

        ... 

        translate_exp_member(member_n) 

 

          Else (i.e. if not an expression actor) then: 

 

        translate_member(member_1) 

        translate_member(member_2) 
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        ... 

        translate_member(member_n) 

    } 

     

Translates an extended language actor body, into a minimal language actor body. If an actor return type is 

defined the declares Response and Request message classes, or otherwise just translates straight. 

 

 

declare_request_creator(reactor_member(message_type)) 

= 

    public static message_typeRequestMessage create( 

        final Actor rsvp, final int reqId,  

        final message_type value) 

    { 

        message_typeRequestMessage m =  

            new message_typeRequestMessage(rsvp, reqId); 

        m.value = value; 

        return m; 

    } 

 

Generates a create factory method for the request message type for a given message type. 

 

 

translate_exp_member(reactor_member(message_type, message_id, 

                                     reactor_number, block), actor_body) 

= 

    private static class message_typeRequestMessage  

                   extends ajava.runtime.ActorRequestMessage 

    { 

        public message_type value; 
        public message_typeRequestMessage(final Actor rsvp, final int reqId) 

        { 

            super(rsvp, reqId); 

        } 

    } 

 

    react (message_typeRequestMessage reqMessage) { 

        message_type message_id = reqMessage.value; 

        translate_reactor_block(block) 

        create_condition_checks(actor_body) 

    } 

 

    declare_fork_actors(reactor_member) 

 

Generates a request message class for a reactor, translates the reactor, and generates fork actor classes for 

every fork block in the reactor. 

 

translate_exp_member(when_reactor_member, actor_body) 

= 

    translate_member(when_reactor_member, actor_body) 

translate_exp_member(method_member(name, return_type,  

                     param_1, ..., param_n, block), actor_body) 

= 

    translate_member(method_member, actor_body) 

translate_exp_member(event_member(actor_interface, event_id), actor_body) 

= 

    translate_member(event_member, actor_body) 
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translate_exp_member(field_member, actor_body)  

= 

    translate_member(field_member, actor_body) 

translate_exp_member(constructor_member, actor_body) 

= 

    translate_member(constructor_member, actor_body) 

translate_member(reactor_member(message_type, message_id, 

                                reactor_number, block), actor_body) 

= 

    react (message_type, message_id)  

        translate_stmt(block) 

translate_member(when_reactor_member(condition, reactor_number, block),  

                 actor_body) 

 

    protected class reactor_numberCondition {} 

 

    translate_member(reactor_member( 

         reactor_numberCondition, msg, 

         reactor_number, block)) 

 

Translates a condition reactor into a message type (which is sent whenever the condition evaluates to true) and 

translates the underlying block as if it were a standard reactor. 

create_condition_checks(actor_body(member_1, ..., member_n)) 

= 

    create_condition_checks(member_1) 

    ... 

    create_condition_checks(member_n); 

create_condition_checks(when_reactor_member(condition,  

                        reactor_number, block)) 

= 

    if ( condition ) this <-- new reactor_numberCondition(); 

 

Generates a check to be placed at the end of every reaction, for a condition reaction, such that after every 

reaction has completed the condition is checked, and when it becomes true the correct message is 

delivered. 

translate_member(method_member(name, return_type,  

                     param_1, ..., param_n, block), actor_body) 

= 

    return_type name(param1, ..., param_n) 

        translate_stmt(block) 

 

Translates an actor method member, translating all event assignments etc. 

 

translate_member(event_member(actor_interface, event_id), actor_body) 

= 

    public final Event<actor_interface> event_id  

        = new Event<actor_interface>(); 

 

Translates an event into a final instance of the event actor, which may be receive Subscribe and 

Unsubrscribe messages, and relays any other messages it receives to all of its subscribers. 

 

translate_member(field_member, actor_body) = field_member 

 

translate_member(constructor_member, actor_body) = constructor_member 
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translate_reactor_block(reactor_member(message_type, message_id, block)) 

= 

           If count_forks(block) ==  0 (i.e. no forks in the reactor) then: 

 

        translate_stmt(block) 

 

          Else (i.e. at least one fork in the reactor) then: 

 

        blockActor(); 

        message_typeForkActor frk = new message_TypeForkActor( 

                                     this, message_id); 

        frk <-- new ajava.runtime.Continue(); 

 

Translates a reactor block, so that if it contains fork blocks, it is replaced with creating an instance of the 

local fork actor class, and sending it a continue message so that it starts executing the reaction. This is done 

so that all local variables are translated into fields of the containing fork actor, and are therefore accessible 

by nested forks. 

 

 

count_forks(fork_statement) = 1 

 

count_forks(return_statement) = 0 

 

count_forks(break_statement) = 0 

 

count_forks(expression_statement) = 0 

 

count_forks(block(statement_1, ..., statement_n)) 

= 

    count_forks(statement_1) + 

    count_forks(statement_2) +  

    ... 

    count_forks(statement_n) 

 

count_forks(if_statement(condition, true_statement, false_statement)) 

= 

    count_forks(true_statement) + 

    count_forks(false_statement) 

 

count_forks(switch_statement(block_1, ..., block_n)) 

= 

    count_forks(block_1) + 

    ... 

    count_forks(block_n) 

 

Counts the number of fork blocks in the statement(s); doesn’t include nested fork blocks. 

 

 

translate_stmt(statement_block(statement_1, ..., statement_n)) 

= 

    { 

        translate_stmt(statement_1) 
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        translate_stmt(statement_2) 

        ... 

        translate_stmt(statement_n) 

    } 

 

translate_stmt(if_statement(condition, true_stmt, false_stmt)) 

= 

    if ( condition ) translate_stmt(true_stmt)  

    else translate_stmt(false_stmt) 

 

translate_stmt(switch_statement(exp, group_1, ..., group_n)) 

= 

    switch ( exp ) { 

        translate_stmt(group_1) 

        ... 

        translate_stmt(group_n) 

    } 

 

translate_stmt(switch_group(case_1, ..., case_n, stmt_1, ..., stmt_n)) 

= 

    case_1 

    ... 

    case_n 

    translate_stmt(stmt_1) 

    ... 

    translate_stmt(stmt_n) 

 

translate_stmt(identifier_expression(id)) 

= 

          If id == “this” then: 

    THIS_LINK 

 

Translates all references to “this” in a fork actor’s continuation to THIS_LINK so that it will refer to the 

containing actor, not the fork actor to which the task was delegated. 

 

translate_stmt(assignment_expression(op, lhs, rhs)) 

= 

    If lhs is instanceof Event then:  

        If op is “+=” then: 

     lhs <-- new Event.Subscribe(rhs); 

        Else if op is “-=” then: 

     lhs <-- new Event.Unsubscribe(rhs); 

 

Translates event subscriptions and unsubscriptions to sending subscribe, and unsubscrive messages. 

 

translate_stmt(return_statement(return_value)) 

= 

    { 

        Response responseMessage = new Response(requestMessage); 

        responseMessage.value = return_value; 

        requestMessage.sendReply(responseMessage); 

        return; 

    } 

 

Translates a return statement into the sending of a response message to the requesting actor. 
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translate_stmt(fork_statement(fork_id, statement_1,..., statement_n, block)) 

= 

    fork_id _fork_id = new fork_id(OWNER_RECEPTIONIST); 

    translate_fork_stmt(statement_1, 1) 

    translate_fork_stmt(statement_2, 2) 

    ... 

    translate_fork_stmt(statement_n, n) 

 

Translates a fork statement into the creation of the relevant fork actor, and translates each of the fork 

statements (expression actor invocations executed concurrently) into a request message send. 

 

translate_stmt(fork_statement(fork_id, statement_1,..., statement_n, block)) 

= 

    fork_id _fork_id = new fork_id(OWNER_RECEPTIONIST); 

    translate_fork_stmt(_fork_id, statement_1, 1) 

    translate_fork_stmt(_fork_id, statement_2, 2) 

    ... 

    translate_fork_stmt(_fork_id, statement_n, n) 

translate_fork_stmt(fork_id, local_variable_declaration(type, id, 

                    value_exp), num) 

= 

    translate_exp_actor_call(fork_id, value_exp) 

translate_fork_stmt(fork_id, assignment_expression(lhs, rhs), num) 

= 

    translate_exp_actor_call(fork_id, rhs) 

 

Translates an expression actor invocation into the sending of the correct request message. 

declare_fork_actors(actor_class_body(member_1, ..., member_n), class_name) 

= 

    declare_fork_actors(member_1, class_name) 

    ... 

    declare_fork_actors(member_n, class_name) 

 

declare_fork_actors(reactor_member(message_type, message_id, block), 

                   class_name) 

= 

           if count_forks(block) > 0 then: 

 

    aclass message_typeForkActor { 

        class_name THIS_LINK; 

        int MSG_WAITING_COUNT; 

        int FORK_WAITING_COUNT; 

 

        message_type message_id; 

        declare_local_vars(block) 

        declare_local_vars(statement_1) 

        ... 

        declare_local_vars(statement_n) 

 

        public message_typeForkActor ( 

                       final class_name THIS_LINK, 

                       message_type message_id) { 

            this.THIS_LINK = THIS_LINK; 
            this.message_id = message_id; 

            this.MSG_WAITING_COUNT = count(statement_1, ..., statement_n); 
            this.FORK_WAITING_COUNT = count_forks(block); 

        } 

 

        public react (ajava.runtime.Continue c) { continue(); } 

        void continue() translate_fork_body(block) 
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        public react (ajava.runtime.ForkDone d) { 

            FORK_WAITING_COUNT--; 

            if (FORK_WAITING_COUNT <= 0) done(); 

        } 

        void done() { THIS_LINK <-- new ajava.runtime.UnblockActor(); } 

 

        declare_fork_actors(block, message_typeForkActor)   

    } 

 

If a reactor contains one or more forks, generates a fork actor class that can be used to delegate the 

reaction, and which contains each local variable in its scope as a field of the actor. When it receives a 

Continue message it performs the reaction, and when all of its child forks have returned their ForkDone 

messages, it unblocks the owning actor, allowing it to receive buffered messages. 

 

declare_fork_actors(block(statement_1, ..., statement_n), container_name) 

= 

    declare_fork_actors(statement_1, container_name) 

    ... 

    declare_fork_actors(statement_n, container_name) 

 

declare_fork_actors(if_statement(condition,  

                    true_stmt, false_stmt), container_name) 

= 

    declare_fork_actors(true_stmt, container_name) 

    declare_fork_actors(false_stmt, container_name) 

 

declare_fork_actors(switch_statement(block_1, ..., block_n), container_name) 

= 

    declare_fork_actors(block_1, container_name) 

    ... 

    declare_fork_actors(block_n, container_name) 

 

declare_fork_actors(fork_statement(fork_id,  

                    statement_1, ..., statement_n, block), container_name) 

= 

    aclass fork_idForkActor { 

        container_name OWNER_RECEPTIONIST 

        int MSG_WAITING_COUNT; 

        int FORK_WAITING_COUNT; 

 

        declare_local_vars(block) 

        declare_local_vars(statement_1) 

        ... 

        declare_local_vars(statement_n) 

 

        public fork_idForkActor(final container_name OWNER_RECEPTIONIST) 

        { 

            this.OWNER_RECEPTIONIST = OWNER_RECEPTIONIST; 

            this.MSG_WAITING_COUNT = count(statement_1, ..., statement_n); 
            this.FORK_WAITING_COUNT = count_forks(block)+1; 

        } 

 

                     For every unqiue type of expression actor referenced in statement_1, ...,  statement_n: 

        declare_fork_reactor(expactor_type_1, statement, ..., statement) 

        ... 

        declare_fork_reactor(expactor_type_n, statement, ..., statement) 

 

        void continue() { 

            try { 

                translate_fork_body(block) 
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            } finally { 

                this(new ForkDone()); 

            } 

        } 

 

        public react (ajava.runtime.ForkDone d) { 

            FORK_WAITING_COUNT--; 

            if (FORK_WAITING_COUNT <= 0) done(); 

        } 

        void done() { OWNER_RECEPTIONIST <-- new ajava.runtime.ForkDone(); } 

 

        declare_fork_actors(block, fork_idForkActor) 

    } 

 

Generates a fork actor class to wait for the responses to the expression actor invocations in its fork 

statements, and when all have been received, executes the fork body and then returns a ForkDone message 

to its containing fork actor, to signal that it is complete. 

 

 

declare_fork_reactor(expactor_type, statement_1, ..., statement_n) 

= 

    public react (expactor_type.Response responseMessage) { 

        switch (responseMessage.getRequestID()) { 

            translate_fork_stmt_reactor(statement_1, 1) 

            ... 

            translate_fork_stmt_reactor(statement_n, n) 

        } 

        if (MSG_WAITING_COUNT <= 0) continuation(); 

    } 

 

Generates a reactor which responses to the response message for a particular expression actor type. The 

switch statements chooses which variable to assign the result to based on the request id, and when all of 

the responses have been received, executes the continuation (the fork body). 

 

translate_fork_stmt_reactor(local_variable_declaration(type, id), num) 

= 

    case num: id = responseMessage.value; 

    MSG_WAITING_COUNT--; break; 

 

translate_fork_stmt_reactor(assignment_expression(lhs, rhs), num) 

= 

    case num: lhs = responseMessage.value; 

    MSG_WAITING_COUNT--; break; 

 

translate_fork_stmt_reactor(method_invocation_expression, num) 

= 

    case num: MSG_WAITING_COUNT--; break; 

 

 

declare_local_vars(local_variable_declaration(type, id_1, ..., id_n)) 

= 

    type id_1, id_2, ..., id_n ; 

 

declare_local_vars(block(statement_1, ..., statement_n)) 

= 

    declare_local_vars(statement_1) 

    ... 

    declare_local_vars(statement_n) 
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declare_local_vars(if_statement(condition, true_statement, false_statement)) 

= 

    declare_local_vars(true_statement) 

    declare_local_vars(false_statement) 

 

declare_local_vars(switch_statement(block_1, ..., block_n)) 

= 

    declare_local_vars(block_1) 

    ... 

    declare_local_vars(block_n) 

 

Translates all local variables, into field declarations. 

 

 

translate_fork_body(block(statement_1, ..., statement_n)) 

= 

    { 

        translate_fork_body(statement_1) 

        ... 

        translate_fork_body(statement_n) 

    } 

 

translate_fork_body(return_statement) 

= 

    translate_return(return_statement) 

 

translate_fork_body(fork_statement(fork_id, statement_1, ..., statement_n, 

                    block)) 

= 

    translate_stmt(fork_statement) 

 

translate_fork_body(if_statement(condition, true_stmt, false_stmt)) 

= 

    if ( condition ) translate_fork_body(true_stmt)  

    else translate_fork_body(false_stmt) 

 

translate_fork_body(switch_statement(exp, group_1, ..., group_n)) 

= 

    switch ( exp ) { 

        translate_fork_body(group_1) 

        ... 

        translate_fork_body(group_n) 

    } 

 

translate_fork_body(switch_group(case_1, ..., case_n, stmt_1, ..., stmt_n)) 

= 

    case_1 

    ... 

    case_n 

    translate_fork_body(stmt_1) 

    ... 

    translate_fork_body(stmt_n) 
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translate_fork_body(local_variable_declaration(type, id_1, ..., id_n,  

                                               val_1, ..., val_n)) 

= 

    id_1 = val_1; 

    ... 

    id_n = val_n; 

 

As all of the local variable declarations have been translated into field within a fork actor, the translates all 

local variable declaration initializers into assignments. 
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Appendix E. 
 

This appendix lists code relevant to the implementation of the prototype translator. The 

definition of the base class used by all actors, and the actor program used to test the 

translator implementation are presented. 

Actor Base Class 

The following lists the abstract base class from which actors inherit via ajava.lang.Actor. 

This class describes the internal workings of a translated actor, and declares the private 

members used by translated actor classes. 

 
package org.taj.ajava.runtime; 

 

import org.taj.ajava.lang.*; 

 

/** 

 * The base class for all actors. 
 * @author Tristan Aubrey-Jones 

 */ 
public abstract class ActorBase implements Runnable { 

  

 // count the actors in the system 

  
 private static int ACTOR_COUNT = 0; 

 private int ACTOR_NUM = ACTOR_COUNT++; 

  

 public static int getActorCount() { return ACTOR_COUNT; } 

  

 // constants 

  

 /** 

  * Defaults to this maximum number of reactions called 

  * for each thread callback. 

  */ 

 private static final int DEFAULT_MAX_REACTIONS_PER_CALLBACK  

         = 5; 

  

 // fields all actors have 

 

 /** 

  * This is the thread that reactions 

  * run in. When a message is received 

  * it buffers it, and either immediately 

  * executes it (inside the calling thread) 

  * or requests a call back from this thread. 

  */ 

 private ActorExecutor executor; 

  

 /** 

  * When the actor requests thread time, this is 

  * set to true, to that repeat requests arent made 

  * while it is already waiting. 

  */ 

 private boolean waitingForCallback; 

  

 /** 

  * Buffer for incoming messages. These are 

  * handled when the thread calls the actor's  

  * "callback" method. 

  */ 

 private ActorMessageQueue incoming; 

  

 /** 

  * When true all incoming messages appart from 

  * the UnblockActor message are buffered, and  

  * not reacted to. This allows the actor to wait 

  * for a reaction that that depending on the results 

  * of actor calls, to complete. 

  */ 
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 private boolean actorBlocked; 

  

 // constructor 

  

 public ActorBase() { 

  // not waiting 

  waitingForCallback = false; 

  // not blocked 

  actorBlocked = false; 

  // create new message queue 

  incoming = new ActorMessageQueue(); 

  // deliver inialize message 

  deliver(new InitializeMessage()); 

  // get an executer 

  executor = ActorExecutorManager.getExecutor(); 

  // request callback if messages on the queue 

  // i.e. if receives the init message 

  //if (incoming.count() > 0) 

  // requestCallback(); 

 } 

  

 // methods 

  

 /** 

  * If there is not already a request pending, 

  * requests that the thread call the callback 

  * method. 

  */ 

 private void requestCallback() { 

  if (!waitingForCallback && executor != null) { 
   executor.requestCallback(this); 

  } 

 } 

  

 /** 

  * Adds the given message to the message queue 

  * and if the actor isnt blocked requests thread time. 

  * @param msg 

  */ 

 protected void bufferMessage(ActorMessage msg) { 

        // inc pending count 

        ActorExecutorManager.incMessageCount(); 

  // buffer message 

        incoming.enqueue(msg); 

        // request callback 

        if (!actorBlocked) requestCallback(); 

 } 

  

 /** 

  * Processes pending reactions. 

  */ 

 public void run() { 

  // run with default max reactions 

  run(DEFAULT_MAX_REACTIONS_PER_CALLBACK); 

 } 

  

    /** 

     * Executes the reactions for up to "count" 

     * messages in the incoming message queue, and 

     * then if there are still unanswered messages, 

     * it will request more time from the thread. 

     */ 

 public synchronized void run(int count) { 

  // check if actor is now blocked 

  if (actorBlocked) { 

                  // when unblocked will request 

   waitingForCallback = false; 
   return; 

  } 

   

  // process pending messages 

  int lim = incoming.count() < count  

                      ? incoming.count() : count; 

  while (lim > 0) {    

   // get a message 

   ActorMessage msg = incoming.dequeue(); 
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                  // process reaction 

   processMessage(msg); 

   ActorExecutorManager.decMessageCount(); 

    

   // check if actor is now blocked 
   if (actorBlocked) { 

                        // when unblocked will request 
    waitingForCallback = false;                      

return; 

   } 

    

   // decrement 

   lim--; 

  } 

   

  // no longer waiting 

  waitingForCallback = false; 

   

  // request another callback if there are 

  // messages remaining 

  if (incoming.count() > 0) { 

   requestCallback(); 

  } 

 } 

  

 // methods used for blocking an actor and buffer all  

 // incoming messages 

  

 /** 

  * Blocks the current actor, so that it wont 

  * process any messages (only buffer them) until 

  * it is unblocked. 

  */ 

 protected void blockActor() { 

  actorBlocked = true; 

 } 

  

 /** 

  * Unblocks the actor and if there are 

  * messages waiting requests thread time. 

  */ 

 protected void unblockActor() { 

     actorBlocked = false; 

     if (incoming.count() > 0) requestCallback(); 

 } 

  

 // methods that need to be implemented by child classes 

  

 protected void deliver(InitializeMessage init) { 

  // if an initializer is defined, this method will 

  // be overriden to buffer the message with a valid 

  // reactor id - thus if no initializer reactor is  

  // define, no message is added. 

 } 

  

 /** 

  * Processes the stalled message, by invoking the 

  * correct reactor for it. Translator should generate 

  * this method with a switch block for every reactor, 

  * on the messages reactor id, typecasting the message 

  * payload to the correct type, and invoking the correct 

  * reactor method. 

  * @param msg 

  */ 

 protected abstract void processMessage(ActorMessage msg); /* { 

  // switch on the correct reactor id 

  switch (msg.reactorId) { 

      case 0: react_0((Integer)msg.payload); break; 

      default: super.processMessage(msg); 

  } 

 } */ 

  

 // for each reactor 

  

 /* 

   

 // e.g. for reactor 0 (type Integer) 
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  public void deliver(Integer msg) { 

     // buffer with correct reactor id 

     bufferMessage(new ActorMessage(msg, 0)); 

  

     // or 

  

     // process immediately 

     react_0(msg); 

 } 

  

 private void react_0(Integer g) { 

  

     // reactor code goes here 

   

 } 

   

  */ 

  

} 

Translator Test Program 

 

This test actor program was used to test the translator implementation, by ensuring that 

correctly behaving Java was emitted for the source that follows: 

 
public actor Actor1 implements Entrypoint { 

 

   // list iterator iterates over all  

   // values in the list when receives run 

   // to use extend from this and override 

   // reaction to Object, which is called  

   // for every iteration. 

   public aclass Iterator { 

        private java.util.List list; 

 

        public Iterator(java.util.List list) { 

            this.list = list; 

        } 

 

        public static class Run {} 

        public react(Run r) {  

            if (list.size() > 0) this(list.size()-1);  

        } 

 

        public react(Object v) {} 

 

        private react(int it) { 

            this(list.get(it)); 

            if (it > 0) this <-- it - 1; 

        } 

    } 

 

    public static aclass Event { 

        // current list of subscribers 

        private java.util.List subscribers; 

 

        public Event() { 

            subscribers = new java.util.ArrayList(); 

        } 

 

        // registers a subscriber 

        public static class Subscribe { 

            Actor a; 

            public Subscribe(Actor a) {  

                this.a = a;  

            } 

        } 

        react (Subscribe s) { 

            subscribers.add(s.a); 

        } 

 

        // sends to all subscribers 
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        private aclass SendAll extends Iterator { 

            private Object msg; 

            public SendAll(java.util.List list, Object msg) {  

                super(list);  

                this.msg = msg; 

            } 

            public react(Object target) { 

                Actor.sendMessage(target, msg); 

            } 

        } 

         

        // receives a message to send out 

        react (Object msg) { 

            SendAll sndr = new SendAll(subscribers, msg); 

            sndr <-- new Iterator.Run(); 

        } 

    } 

 

    // Expression Actors 

 

    private actor Times2 returns int { 

        public react(int i) { return i * 2; } 

    } 

 

    // times an integer by two 

    private aclass Doubler returns int { 

        react(int x) {  

            System.out.println("double called");  

            return x*2;  

        } 

    } 

 

    public aclass Actor2 { 

 

        // request counter 

        private int num = 0; 

 

        public final Event RequestReceived = new Event(); 

 

        public final Doubler makeDouble = new Doubler(); 

      

        public react (int i) { 

            // raise event 

            RequestReceived <-- i; 

            System.out.print("request number: "); 

            System.out.println(num);  

 

            // uses forks and actor requests 

            i = Times2(i); 

            System.out.println(i); 

            int b = 2; 

            b = Times2(i); 

            System.out.println(b); 

 

            // increments req number 

            // (happens in final receptionist) 

            num++; 

        } 

 

    } 

 

    public react(String[] args) { 

        System.out.println("Hello World!"); 

        Actor2 a2 = new Actor2(); 

        a2.RequestReceived <-- new Event.Subscribe(this); 

        a2 <-- 2; 

        a2 <-- 3; 

 

        // test public final actors 

        int i = a2.makeDouble(1); 

        System.out.print("a2.makeDouble(1) returns "); 

        System.out.println(i); 

    } 

 

    public react (int i) { 

        System.out.print("a2.RequestReceived event occured: "); 

        System.out.println(i); 
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    } 

 

} 
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Appendix F. 
 

This appendix lists the example actor programs written to evaluate the language, and the 

translator implementation. Examples were chosen to evaluate the usability of the 

language in different programming situations. 

Dining Philosophers Example 

 

This program implements a solution of the dining philosophers problem, to evaluate how 

good the language and translator is at solving common IPC problems. 

 
public aclass Table { 

 

    private Clock clk; 

 
    private int numPlaces; 

    private Fork[] forks; 
    private Philosopher[] diners; 

    private int[] states; 

     

    public Table(Clock clk, int numPlaces) { 
        this.clk = clk; 

        this.numPlaces = numPlaces; 
        this.forks = new Fork[numPlaces]; 

        this.diners = new Philosopher[numPlaces]; 
        this.states = new int[numPlaces]; 

        createPlace(numPlaces-1); 

    } 

     

    private void createPlace(int index) { 

        forks[index] = new Fork(index); 

        diners[index] = new Philosopher(this, index); 

        clk.subscribe(diners[index]); 

        states[index] = State.THINKING; 

        if (index > 0) createPlace(index-1); 

    } 

     

    private int left(int id) {  

        id--; 

        if (id < 0) id += numPlaces; 
        return id; 

    } 

    private int right(int id) { 

        id++; 

        if (id >= numPlaces) id -= numPlaces; 

        return id; 

    } 

     

    // when a philosopher becomes hungry, updates its 

    // state, and tries to eat 

    public react (Philosopher.IsHungry msg) { 

        // update state 

        states[msg.id] = State.HUNGRY; 

     

        // try and eat 

        tryEat(msg.id); 

    } 

         

    // when receives some forks from a philosopher 

    // records the fact it is thinking, and tries 

    // serve its neighbours 

    public react (MoveForks frks) { 

        // return forks 

        forks[frks.id] <-- frks.lhf; 

        forks[right(frks.id)] <-- frks.rhf; 

        states[frks.id] = State.THINKING; 

         

        // try left and right 

        tryEat(left(frks.id)); 
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        tryEat(right(frks.id)); 

    } 

     

    // if the philosopher is hungry, and neither 

    // neighbour is eating, then pass it its forks. 
    private void tryEat(int id) { 

        // if hungry, and left not eat, and right not eating 
        if (states[id] == State.HUNGRY && 

            states[left(id)] != State.EATING && 

            states[right(id)] != State.EATING)  

        { 

            // move forks to the philosopher 

            states[id] = State.EATING; 

            diners[id] <-- new MoveForks(id,  

                                 forks[id], forks[right(id)]); 

        }  

    } 

     

} 

 
import java.util.Random; 

 

public aclass Philosopher { 

 

    private int id; 

    private Table table; 

    private Fork lhf, rhf; 

    private int state; 

     

    public Philosopher(Table table, int id) { 

        this.table = table; 

        this.id = id; 

        this.state = State.THINKING; 

        randomDelay(); 

    } 

         

    // begins thinking, moves forks back  

    // to the table, and delays a random time 

    private void think() { 

        // give forks back 

        table <-- new MoveForks(id, lhf, rhf); 

        // remember: lhf and rhf are destructive reads 

        // as are linear objects 

     

        // change state 

        state = State.THINKING; 

        // think for random time 

        randomDelay(); 

    } 

     

    // becomes hungry, and announces to table 

    // that it is hungry 

    public static class IsHungry { 

        public int id; 
        public IsHungry(int id) { this.id = id; } 

    } 
    private void hungry() { 

        state = State.HUNGRY; 
        table <-- new IsHungry(id); 

    } 

     

    // receives forks simultaneously, and 

    // begins to eat 

    public react (MoveForks frks) { 
        this.lhf <-- frks.lhf; 

        this.rhf <-- frks.rhf; 

        eat(); 

    } 

     

    // eats for a random time 

    private void eat() { 

        state = State.EATING; 

        randomDelay(); 

    } 

         

    // uses clock pulses, and a random countdown 
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    // to delay for a random period when thinking 

    // and eating. 

    private static final Random RNG = new Random(); 
    private int countdown; 

    private void randomDelay() { 

        countdown = RNG.nextInt(10) + 1; 

    } 
    public react (Clock.Tick t) { 

        countdown--; 
        if (countdown == 0) proceed(); 

    } 
    private void proceed() { 

        if (state == State.THINKING) {  

            hungry();  

        } 

        else { 

            if (state == State.EATING) {  

                think(); 

            } 

            else; 

        } 

    } 

} 

 
public linear class Fork { 

    private int id; 

     

    public Fork(int id) { 

        this.id = id; 

    } 

     

    public int getId() { 

        return id;  

    } 

} 

 

Quick sort example 

 

This example implements a simple parallel Quicksort, in both Java and the actor 

language to explore how well the language solves common divide and conquer parallel 

tasks.  

 

Benchmarks 
 
Array 
Size 1 Core     6 Core     

  Sequential Actors Threads Sequential Actors Threads 

1,000,000 547ms 554ms 564ms 972ms 612ms 693ms 

100,000 52ms 51ms 54ms 77ms 67ms 73ms 

10,000 3ms 6ms 21ms 7ms 30ms 37ms 

 

Actor version ~ 30 lines 
 
import org.taj.ajava.util.*; 

 

/** Sorter, performs quicksort on integer arrays 

    using array partitioning */ 

public aclass IntSorter returns IntegerArray { 

 

    public react (IntegerArray array) {     

        if (array.size() <= SorterMethods.MIN_PARTITION_SIZE) { 

            // sorts manageable chunks sequentially   

            SorterMethods.sortArray(array); 

            return array; 

        } else {    
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              // partition inplace around a pivot value      
         int pivotIndex = SorterMethods.choosePivotIndex(array); 

         int pivotNewIndex =  

                    SorterMethods.partitionArray(array, pivotIndex); 

          

         // split the array in two (underlying array 

         // remains unsplit, allows safe distribution 

         // of array) 

         int[] indices = new int[1]; 

         indices[0] = pivotNewIndex; 

         IntegerArray[] parts = array.split(indices); 

   

              // sort both halves concurrently 

         IntSorter lhs = new IntSorter(); 

         IntSorter rhs = new IntSorter(); 
         fork ( parts[0] = lhs(parts[0]); 

                parts[1] = rhs(parts[1]); ) 

         {         

             // join the sorted halves back together 

             // (they still exist inplace, so no  

             // copying nessesary) 

             array.merge(parts); 

              

           // return the sorted array 
                return array; 

         } 

        } 

    } 

} 

 

Java version ~ 70 lines 
 
import org.taj.ajava.util.*; 

 

public class IntSorterThread { 

 

 /** 

  * Sorts an array using recursive quicksort.   

  */ 

 private static class WorkerThread extends Thread { 

   

  private IntegerArray array; 

   

  public WorkerThread(IntegerArray array) { 

   this.array = array; 

  } 

   
  public IntegerArray removeArray() { 

   IntegerArray a = array; 

   array = null; 

   return a; 

  } 

   

  public void run() { 

   if (array.size() 

                      <= SorterMethods.MIN_PARTITION_SIZE)  

                  { 

    SorterMethods.sortArray(array); 

   } else { 

                    // partition array 

          int pivotIndex =  

                     SorterMethods.choosePivotIndex(array); 
          int pivotNewIndex = 

                     SorterMethods.partitionArray(array, pivotIndex); 

           

                    // split into two halves 
          int[] indices = new int[1]; 

          indices[0] = pivotNewIndex; 

          IntegerArray[] parts = array.split(indices); 

           

          // sort concurrently 

          WorkerThread lhs = new WorkerThread(parts[0]); 
          WorkerThread rhs = new WorkerThread(parts[1]); 

          lhs.start(); 

          rhs.start(); 
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                    // sorting... 

    
          try { 

                        // wait for threads to finish 

              lhs.join(); 

              rhs.join(); 
          } catch (InterruptedException ex) { 

           throw (new RuntimeException(ex)); 

          } 

 

                    // join parts together 

          parts[0] = lhs.removeArray(); 

          parts[1] = rhs.removeArray(); 

          array.merge(parts); 

   } 

  } 

 } 

  

 /** 

  * Inplace quicksort, delegated to threads. 

  * @param array 
  * @return 

  */ 
 public IntegerArray sort(IntegerArray array) { 

  WorkerThread t = new WorkerThread(array); 

  t.start(); 

        try { 

            t.join(); 

        } catch (InterruptedException ex) { 
         throw (new RuntimeException(ex)); 

        } 

  return t.removeArray(); 

 } 

} 

 

 

Event actor class 

 

The following classes are used by the calculator example that follows to implement 

events, and demonstrate the ability to inherit protocols using actor inheritance. Here the 

list iterator could be used as a common base class for almost all iteration. 

 

List Iterator 
 
import java.util.List;   

 

/** A list iterator iterates over all  

  * values in the list when it receives run. 

  * To use, extend from this and override 

  * reaction to Object, which is called  

  * for every iteration.  

  */ 

public aclass ListIterator { 

    private List list; 

 

    public ListIterator(List list) { 

        this.list = list; 

    } 

 

    public static class Run {} 

    public react(Run r) {  

        if (list.size() > 0) this(list.size()-1);  

    } 

 

    public react(Object v) {} 

 

    private react(int it) { 

        this(list.get(it)); 

        if (it > 0) this <-- it - 1; 
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    } 

} 

 

Event Actor 
 
import java.util.*; 

 

/** 

 * Event actor which relays all messages to  

 * it subscribers. 

 */ 

public aclass Event { 

    // current list of subscribers 

    private List subscribers; 

 

    public Event() { 

        subscribers = new ArrayList(); 

    } 

 

    // registers a subscriber 

    public static class Subscribe { 

        Actor a; 

        public Subscribe(Actor a) {  

            this.a = a;  

        } 

    } 

    public react (Subscribe s) { 

        subscribers.add(s.a); 

    } 

     

    // unsubscribe 

    public static class Unsubscribe { 

        Actor a; 

        public Unsubscribe(Actor a) {  

            this.a = a;  

        } 

    } 

    public react (Unsubscribe s) { 

        subscribers.remove(s.a); 

    } 

 

    // sends to all subscribers 

    private aclass SendAll extends ListIterator { 

        private Object msg; 

        public SendAll(List list, Object msg) {  

            super(list);  

            this.msg = msg; 

        } 

        public react(Object target) { 

            Actor.sendMessage(target, msg); 

        } 

    } 

     

    // receives a message to send out 

    react (Object msg) { 

        SendAll sndr = new SendAll(subscribers, msg); 

        sndr <-- new ListIterator.Run(); 

    } 

} 

 

Calculator example 

 

This example demonstrates the language’s ability to create modular interactive 

applications, making good used of event driven programming. 

 
public actor Main implements Entrypoint { 

 

    private Calculator calculator  

        = new Calculator(); 
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    public react (String[] args) { 

        // show calculator 

        calculator <-- new AFrame.Show(); 

    } 

} 

 

 

import javax.swing.*; 

import java.awt.*; 

 

public aclass Calculator extends AFrame { 

 

    // members    
    final ALU alu; 

    final NumberBox display; 
    final ADigitPad digitPad; 

    final AOpPad opPad; 

     

    // constructor 

    public Calculator() { 

        super("Calculator"); 

        frame.setSize(300, 200); 

         

        // alu 

        alu = new ALU(); 

         

        // create panel 

        APanel panel = new APanel(); 

        contentPane <-- new AContainer.AddComponent(panel); 

         

        // number display 

        display = new NumberBox(); 

        display.OnOperation <-- new Event.Subscribe(alu); 

        alu.OnResult <-- new Event.Subscribe(display); 
        panel <-- new AContainer.AddComponent(display); 

                 

        // create digit pad 

        digitPad = new ADigitPad(); 
        digitPad.OnClick <-- new Event.Subscribe(display); 

        panel <-- new AContainer.AddComponent(digitPad); 

         

        // create operation buttons 

        opPad = new AOpPad(); 

        opPad.OnClick <-- new Event.Subscribe(this); 

        panel <-- new AContainer.AddComponent(opPad); 

 

        // register for key presses 

        OnKeyTyped <-- new Event.Subscribe(this); 

        digitPad.OnKeyTyped <-- new Event.Subscribe(this); 

        opPad.OnKeyTyped <-- new Event.Subscribe(this); 

    } 

 

 

     

    // receives an operation command 

    public react (char op) { 

        if (validOperator(op)) { 

            display <-- new Operation(op); 

        } 

    } 

     

    // key press 

    public react (KeyboardEvent e) { 

        // numeric digit 

        if (Character.isDigit(e.character) || e.character == '.') { 

            display <-- e.character; 

        } 

        // return 

        else if (e.character == '\r' || e.character == '\n') 

            this('='); 

        // operator 

        else this(e.character); 

    } 

     

    // operations 

    public class Operation {    
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        public char operator; // operation to perform 
        public double operand; // value of number register 

        public Operation(char op) { 
            this.operator = op; 

        } 

    } 

     
    private static boolean validOperator(char c) { 

        switch (c) { 
            case '+': case '-':  

            case '*': case '/': 
            case '^': case '=': 

                return true; 
            default:  

                return false; 

        } 

    } 

} 

 

public aclass ALU { 

 
    private double register; 

    private char operator = '='; 

     

    public final Event OnResult = new Event(); 

     

    public ALU() { 

        register = 0.0; 

    } 

 

    // perform operation 

    public react (Calculator.Operation op) { 

        System.out.print(op.operand); 

        System.out.print(op.operator); 

     

        // perform op 
        switch (operator) { 

            case '+': register += op.operand; break; 
            case '-': register -= op.operand; break; 

            case '*': register *= op.operand; break; 
            case '/': register /= op.operand; break; 

            case '^': register = Math.pow(register, op.operand);  
                      break; 

            // if was equals then new reg is operand 

            case '=': register = op.operand; break; 

        } 

        operator = op.operator; 

         

        // raise event 

        System.out.println(" returns " + Double.toString(register)); 

        OnResult <-- register; 

    } 

} 

 

import javax.swing.*; 

 

public aclass NumberBox extends AComponent { 

 

    protected JTextField textField; 
    private boolean reset = false; 

    private boolean donePoint = false; 

     

    public final Event OnOperation = new Event(); 

 

    public NumberBox() { 
        super(new JTextField(15)); 

        textField = (JTextField)(component); 

        textField.setHorizontalAlignment(JTextField.RIGHT); 

        textField.setText("0"); 

    } 

        

    // appends a character (digit, or point) 

    // to the current numeral 

    public react (char c) { 

        // digit 

        if (Character.isDigit(c)) { 
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         if (reset) { 

             textField.setText("" + c); 

             reset = false; 

         } 

         else if (textField.getText().equals("0")) { 
             if (c != '0') textField.setText("" + c); 

         } else { 

             textField.setText(textField.getText() + "" + c); 

         } 

        } 

        // decimal point 
        else if (c == '.' && !donePoint) { 

            textField.setText(textField.getText() + '.'); 

            donePoint = true; 

        } 

    } 

     

    // injects the current operand into the operation 

    // and forwards it to the ALU 

    public react (Calculator.Operation op) {      

        // pass to ALU 

        op.operand = Double.parseDouble(textField.getText()); 

        OnOperation <-- op; 

    } 

     

    // sets the value, resulting from an ALU 

    // operation 

    public react (double v) { 

        textField.setText(Double.toString(v)); 

        reset = true; 
        donePoint = false; 

    } 

} 

 

import javax.swing.*; 

import java.awt.*; 
import java.awt.event.*; 

 
public aclass ADigitPad extends AContainer { 

 

    protected final GridLayout layout; 

    protected final ACharButton[] buttons; 

     

    public final Event OnClick = new Event(); 

 

    public ADigitPad() { 

        // create panel 

        super(new JPanel()); 

        layout = new GridLayout(4,3); 

        container.setLayout(layout); 

        buttons = new ACharButton[10]; 

        createButtons(7); // 7,8,9,4,5,6,1,2,3,0 

    } 

     

    private void createButtons(int value) { 

        createButton(value); 

        if (value == 3) createButton(0); 
        else if (value % 3 == 0) createButtons(value-5); 

        else createButtons(value+1); 

    } 

     

    private void createButton(int value) { 

        buttons[value] =  

                new ACharButton(Character.forDigit(value, 10)); 

        buttons[value].OnKeyTyped <--  

                new Event.Subscribe(OnKeyTyped); 

        buttons[value].OnClick <-- new Event.Subscribe(OnClick); 

        this <-- new AddComponent(buttons[value]); 

    } 

} 


