
COMP2004 Coursework: Uncertain Reasoning

Tristan Aubrey-Jones (taj105@ecs.soton.ac.uk)

April 2, 2007

1 Simulation of events

In order to generate the 100,000 sample events for the Bayesian network I
have written a MatLab function model1 to model the network and generate
a single event, and another function samplemodel to repeat this 100,000
times and store the results in a matrix. These functions can both be found
in Appendix 1 of this document.

2 Exercises based on generated events

1. The answers below were calculated from the data set generated above
using a function I have called calculateProbs [Appendix 2] which takes
a matrix of events, a matrix of ’test’ conditions, and a matrix of ’given’
conditions. For example to calculate P̃ (b1, c0|a1) on the sample matrix
s1 I would use:

answer = calculateProb(s1, [2 1; 3 0], [1 1]);

calculateProb works by iterating all of the events in a sample, and
keeping a count Ngiven of the number of events where the prior (given)
conditions hold, and a count Ncond of the number of events where both
the prior and conditional conditions hold. The empirical estimate of
the probability is then given by Ncond/Ngiven.

(a) These are the empirical estimates of the marginal probabilities.

1

Variable Value Probability

P̃ (A) a1 0.20038
a0 0.79962

P̃ (B) b1 0.08975
b0 0.91025

P̃ (C) c1 0.05892
c0 0.94108

P̃ (D) d1 0.08234
d0 0.91766

P̃ (E) e1 0.08289
e0 0.91711

(b) Here, as one would expect, P̃ (B, C|A) approximates closely to
P̃ (B|A) × P̃ (C|A). If worked out systematically from the net-
work itself these probabilities should be equal, as by product rule
P (B, C|A) ≡ P (B|A) × P (C|A), and so we can infer that the
miner difference in this case is due to the randomness of the sam-
ple, and would diminish if a larger sample was taken.

P̃ (b1, c1|a1) = 0.02395449 ' P̃ (b1|a1)× P̃ (c1|a1) = 0.02407680

P̃ (b1, c1|a0) = 0.00230109 ' P̃ (b1|a0)× P̃ (c1|a0) = 0.00245257

P̃ (b1, c0|a1) = 0.22666933 ' P̃ (b1|a1)× P̃ (c0|a1) = 0.22654702

P̃ (b1, c0|a0) = 0.04713489 ' P̃ (b1|a0)× P̃ (c0|a0) = 0.04698341

P̃ (b0, c1|a1) = 0.07211299 ' P̃ (b0|a1)× P̃ (c1|a1) = 0.07199068

P̃ (b0, c1|a0) = 0.04730997 ' P̃ (b0|a0)× P̃ (c1|a0) = 0.04715849

P̃ (b0, c0|a1) = 0.67726320 ' P̃ (b0|a1)× P̃ (c0|a1) = 0.67738551

P̃ (b0, c0|a0) = 0.90325405 ' P̃ (b0|a0)× P̃ (c0|a0) = 0.90340552

(c) Below is a comparison of the empirical probabilities given by
P̃ (B, C|A, D) and P̃ (B|A)× P̃ (C|A). Unlike part (b), the proba-
bilities here do not approximate to each other, as the information
about the outcome D gives posterior, information about the likely
outcomes of B and C.

2

P̃ (b1, c1|a1, d1) = 0.16253444 P̃ (b1|a1)× P̃ (c1|a1) = 0.02407680

P̃ (b1, c1|a1, d0) = 0.00705487 ..

P̃ (b1, c1|a0, d1) = 0.02113606 P̃ (b1|a0)× P̃ (c1|a0) = 0.00245257

P̃ (b1, c1|a0, d0) = 0.00075772 ..

P̃ (b1, c0|a1, d1) = 0.20752984 P̃ (b1|a1)× P̃ (c0|a1) = 0.22654702

P̃ (b1, c0|a1, d0) = 0.22900336 ..

P̃ (b1, c0|a0, d1) = 0.06439894 P̃ (b1|a0)× P̃ (c0|a0) = 0.04698341

P̃ (b1, c0|a0, d0) = 0.04572024 ..

P̃ (b0, c1|a1, d1) = 0.32552801 P̃ (b0|a1)× P̃ (c1|a1) = 0.07199068

P̃ (b0, c1|a1, d0) = 0.04120941 ..

P̃ (b0, c1|a0, d1) = 0.30828930 P̃ (b0|a0)× P̃ (c1|a0) = 0.04715849

P̃ (b0, c1|a0, d0) = 0.02592482 ..

P̃ (b0, c0|a1, d1) = 0.30440771 P̃ (b0|a1)× P̃ (c0|a1) = 0.67738551

P̃ (b0, c0|a1, d0) = 0.72273236 ..

P̃ (b0, c0|a0, d1) = 0.60617569 P̃ (b0|a0)× P̃ (c0|a0) = 0.90340552

P̃ (b0, c0|a0, d0) = 0.92759722 ..

(d) Below is a comparison between P̃ (D|A, B, C) and P̃ (D|B, C). As
one would expect the two approximate to each other, due to the
markov property of D such that it is only conditional upon B and
C. Thus when the outcomes of these are both known, the outcome
of A gives no additional information.

P̃ (d1|b1, c1, a1) = 0.73750000 ' P̃ (d1|b1, c1) = 0.72590361

P̃ (d1|b1, c1, a0) = 0.69565217 ..

P̃ (d1|b1, c0, a1) = 0.09951563 ' P̃ (d1|b1, c0) = 0.10131151

P̃ (d1|b1, c0, a0) = 0.10347572 ..

P̃ (d1|b0, c1, a1) = 0.49065744 ' P̃ (d1|b0, c1) = 0.49273145

P̃ (d1|b0, c1, a0) = 0.49352366 ..

P̃ (d1|b0, c0, a1) = 0.04885417 ' P̃ (d1|b0, c0) = 0.05051459

P̃ (d1|b0, c0, a0) = 0.05082657 ..

(e) Below is a comparison between P̃ (E|A, B, C,D) and P̃ (E|C).
Here, in a similar way to above, we see that the two approxi-
mate. This is due to markov property of E such that it is only
directly dependent on C.

3

P̃ (e1|c1, a1, b1, d1) = 0.59039548 ' P̃ (e1|c1) = 0.60420910

P̃ (e1|c1, a1, b1, d0) = 0.61904762 ..

P̃ (e1|c1, a1, b0, d1) = 0.58956276 ..

P̃ (e1|c1, a1, b0, d0) = 0.61277174 ..

P̃ (e1|c1, a0, b1, d1) = 0.62500000 ..

P̃ (e1|c1, a0, b1, d0) = 0.57142857 ..

P̃ (e1|c1, a0, b0, d1) = 0.60685592 ..

P̃ (e1|c1, a0, b0, d0) = 0.60490605 ..

P̃ (e1|c0, a1, b1, d1) = 0.05973451 ' P̃ (e1|c0) = 0.05025078

P̃ (e1|c0, a1, b1, d0) = 0.05061125 ..

P̃ (e1|c0, a1, b0, d1) = 0.05580694 ..

P̃ (e1|c0, a1, b0, d0) = 0.05113108 ..

P̃ (e1|c0, a0, b1, d1) = 0.06153846 ..

P̃ (e1|c0, a0, b1, d0) = 0.04557561 ..

P̃ (e1|c0, a0, b0, d1) = 0.04848815 ..

P̃ (e1|c0, a0, b0, d0) = 0.05020786 ..

2. Below are the exact probabilities for 1, computed by directly manip-
ulating the joint distribution. In order to compute these probabilities
I have programmed a Matlab function named computeProbs which
can be found in Appendix 3. For example to calculate P (B, C|A) I
would invoke:

answer = computeProbs([2 3], [1]);

computeProbs takes 2 row vectors, of conditional variables and prior
variables. It the proceeds through all combinations of these input vari-
ables using recursion, and for each combination calculates its proba-
bility by exploiting the identity P (X|Y) = P (X, Y)/P (Y). It uses a
function named computeProb to calculate the joint probability of both
P (X, Y) and P (Y).

computeProb works by summing over the individual probabilities of all
of the events in the joint distribution P (A, B, C,D, E) where the con-
strained variables take the values specified. It does this by proceeding
recursively over all of the variables, and if the current variable is in the
constraints, it is fixed at that value, otherwise the sum of the probabil-
ities is taken for when that variable is 1 or 0. It uses a function named
profOfEvent to calculate the probability of an individual event in the
network.

4

probOfEvent works by using the product rule, and multiplying the
appropriate probabilities from the variables’ CDT’s, for the event spec-
ified.

Thus all of the probabilities can be calculated by directly manipulating
the joint distribution.

(a) These are the marginal probabilities computed directly from the
joint distribution using the computeProbs function explained above.

i. P (a1) = 0.2

ii. P (b1) = 0.09

iii. P (c1) = 0.06

iv. P (d1) = 0.0829

v. P (e1) = 0.083

(b) Below the equivalence P (B, C|A) ≡ P (B|A)× P (C|A) is demon-
strated.

P (b1, c1|a1) = 0.025 = P (b1|a1)× P (c1|a1) = 0.025
P (b1, c1|a0) = 0.0025 = P (b1|a0)× P (c1|a0) = 0.0025
P (b1, c0|a1) = 0.225 = P (b1|a1)× P (c0|a1) = 0.225
P (b1, c0|a0) = 0.0475 = P (b1|a0)× P (c0|a0) = 0.0475
P (b0, c1|a1) = 0.075 = P (b0|a1)× P (c1|a1) = 0.075
P (b0, c1|a0) = 0.0475 = P (b0|a0)× P (c1|a0) = 0.0475
P (b0, c0|a1) = 0.675 = P (b0|a1)× P (c0|a1) = 0.675
P (b0, c0|a0) = 0.9025 = P (b0|a0)× P (c0|a0) = 0.9025

(c) Below is a comparison between P (B, C|A, D) and P (B|A) and
P (C|A):

5

P (b1, c1|a1, d1) = 0.16666667 P (b1|a1)× P (c1|a1) = 0.025
P (b1, c1|a1, d0) = 0.00704225
P (b1, c1|a0, d1) = 0.02483444 P (b1|a0)× P (c1|a0) = 0.0025
P (b1, c1|a0, d0) = 0.00067604
P (b1, c0|a1, d1) = 0.20000000 P (b1|a1)× P (c0|a1) = 0.225
P (b1, c0|a1, d0) = 0.22816901
P (b1, c0|a0, d1) = 0.06291391 P (b1|a0)× P (c0|a0) = 0.0475
P (b1, c0|a0, d0) = 0.04624121
P (b0, c1|a1, d1) = 0.33333333 P (b0|a1)× P (c1|a1) = 0.075
P (b0, c1|a1, d0) = 0.04225352
P (b0, c1|a0, d1) = 0.31456954 P (b0|a0)× P (c1|a0) = 0.0475
P (b0, c1|a0, d0) = 0.02568956
P (b0, c0|a1, d1) = 0.30000000 P (b0|a1)× P (c0|a1) = 0.675
P (b0, c0|a1, d0) = 0.72253521
P (b0, c0|a0, d1) = 0.59768212 P (b0|a0)× P (c0|a0) = 0.9025
P (b0, c0|a0, d0) = 0.92739319

(d) Below the equivalence P (D|A, B, C) ≡ P (D|B, C) is demonstrated.
This is due to the markov property of D such that it is only depen-
dent directly on the outcomes of B and C. Thus the additional
knowledge about the outcome of A has no effect.

P (D|A, B, C) =
P (A, B, C,D)

P (A, B, C)

=
P (A)P (B|A)P (C|A)P (D|B, C)

P (A)P (B|A)P (C|A)

= P (D|B, C)

P (d1|b1, c1, a1) = 0.75000000 = P (d1|b1, c1) = 0.75000000
P (d1|b1, c1, a0) = 0.75000000 ..
P (d1|b1, c0, a1) = 0.10000000 = P (d1|b1, c0) = 0.10000000
P (d1|b1, c0, a0) = 0.10000000 ..
P (d1|b0, c1, a1) = 0.50000000 = P (d1|b0, c1) = 0.50000000
P (d1|b0, c1, a0) = 0.50000000 ..
P (d1|b0, c0, a1) = 0.05000000 = P (d1|b0, c0) = 0.05000000
P (d1|b0, c0, a0) = 0.05000000 ..

(e) Below the equivalence P (E|A, B, C,D) ≡ P (E|C) is demonstrated.
This is due to the markov property of E such that it is only de-
pendent directly on the outcome of C.

6

P (e1|c1, a1, b1, d1) = 0.60000000 = P (e1|c1) = 0.60000000
P (e1|c1, a1, b1, d0) = 0.60000000 ..
P (e1|c1, a1, b0, d1) = 0.60000000 ..
P (e1|c1, a1, b0, d0) = 0.60000000 ..
P (e1|c1, a0, b1, d1) = 0.60000000 ..
P (e1|c1, a0, b1, d0) = 0.60000000 ..
P (e1|c1, a0, b0, d1) = 0.60000000 ..
P (e1|c1, a0, b0, d0) = 0.60000000 ..
P (e1|c0, a1, b1, d1) = 0.05000000 = P (e1|c0) = 0.05000000
P (e1|c0, a1, b1, d0) = 0.05000000 ..
P (e1|c0, a1, b0, d1) = 0.05000000 ..
P (e1|c0, a1, b0, d0) = 0.05000000 ..
P (e1|c0, a0, b1, d1) = 0.05000000 ..
P (e1|c0, a0, b1, d0) = 0.05000000 ..
P (e1|c0, a0, b0, d1) = 0.05000000 ..
P (e1|c0, a0, b0, d0) = 0.05000000 ..

3. (a) Graphs showing comparisons between exact probabilities and the
empirical estimates for increasing sample sizes are shown below.
From them it is clear to see that with small sizes of N the esti-
mates vary wildly, but as N increases the values settle close to the
actual probabilities. These graphs were produced by the function
plotQuestion3A which can be found in Appendix A.

7

8

(b) The graph below shows the likelihood ratios [computeLikelihoodRatios
Appendix 4] of the model for the data in di ∈ SN . As the sample
size increases the ratios increase (or decrease) exponentially and
so I have computed the values (and plotted) them using natural

9

logarithms. From this it is clear to see that M2 is much less likely
than M1 or M3 and that M1 and M3 seem to have comparable
likelihoods.

When the likelihood ratio between M1 and M3 is examined more
closely (see graph below), it is still clear that M1 has a greater
likelihood, as one would expect. However, the graph above high-
lights that this is not not nearly as pronounced as in the case of
M2. This is due to the fact that M3 only differs from M1 in that
C depends on both A and B, whereas in M2 B is not conditional
on A and D is not conditional on B.

10

(c) In order to calculate and compare the posterior probabilities on
the three models I have written a function computePosteriorProbs
[Appendix 4]. The sum over the hypotheses which makes up the
denominator of the posterior probability calculation drops to 0
very quickly (giving divide by zero errors) as the size of N is in-
creased. This is due to the fact that the probabilities settle to
very close to certainty (1) and impossabilty (0), quickly growing
beyond machine representation. I am therefore only showing the
function in the range N ∈ [0, 200] here.

11

Here above we see that immediately (around N = 10) P (M2|di)
tends to impossible, whereas it is not until nearly N = 110 that
P (M3|di) drops to the same. Interestingly for N ∈ [1, 100] it
seems that M3 is much more likely than M1, though this changes
at N = 100 and from then on P (M1|di) tends to certainty.

4. (a) I worked out the following d-separation properties of nodes in
Model 1, using the Bayes Ball algorithm.

P (B, C|A) {B} ⊥ {C}|{A}
P (B, C|A, D) {B} is not d-separate {C}|{A, D}
P (A, D|B) {A} is not d-separate {D}|{B}
P (A, D|B, C) {A} ⊥ {D}|{B, C}

(b) Below are the d-separation properties for models M2 and M3.

Sets Model 1 Model 2 Model 3
{B} ⊥ {C}|{A} Yes No No
{B} ⊥ {C}|{A, D} No No No
{A} ⊥ {D}|{B} No No No
{A} ⊥ {D}|{B, C} Yes Yes Yes

{B} ⊥ {C}|{A} differs from Model 1 in models 2 and 3. This
is showing that in M1 B is independent of C, given A and thus
P (B, C|A) = P (B|A) × P (C|A), whereas in M2, M3 C is depen-
dent on B.

12

5. Below is the likelihood ratio between M2 and M3, in terms of the con-
ditional probabilities in their respective CDTs.

di = (a, b, c, d, e)

P (di|M2)

P (di|M3)
=

P (a)P (b)P (c|a, b)P (d|c)P (e|c)
P (a)P (b|a)P (c|a, b)P (d|b, c)P (e|c)

=
P (b)P (d|c)

P (b|a)P (d|b, c)

Here we see that the likelihood of M2 is less than M3 when:

P (b)P (d|c) < P (b|a)P (d|b, c) (1)

This will occur in data where there is some correlation in the data
between a and b, and between d and b. Both of these correlations are
true of the sample data generated for M1, and so this relationship can
be illustrated with the following graph of the likelihood ratios from
question 3b.

6. In order to make M3 come out favorably for N ∈ [1, 200] the prior prob-
ability of M1 must be drastically decreased, and the prior probability
P (M3) similarly increased. Below is a graph of the function for the
range N ∈ [1, 300] with prior probabilities in the ratio 5 : 10, 000, 000 :
13, 999, 999.

13

Here M3 now comes out favorably over M1 between N = [110, 200], but
in order to ensure that the prior probabilities have had to be changed
by near a factor of a million.

14

3 Appendix 1: Simulation source code

samplemodel function This function takes a function handle, pointing to
a function which returns a random event for its Bayesian network, and the
size of the sample to generate. It repeatedly invokes the model’s function,
generating row vector events, and placing them as the rows in the resultant
matix.

function set = samplemodel(fmodel, n);

% SAMPLEMODEL samples the fmodel function handle n times

% and returns the resulting events in a matrix

% with 1 event per row.

%% sample

set = [];

for i = 1:n

event = fmodel();

set(i, 1:length(event)) = event;

end

model1 function This function models the 1st Bayesian network in the
coursework, and returns a random event for this network as a row vector
(ABCDE). A handle of this function can be passed to samplemodel to
generate a sample for it.

function event = model1();

% NETWORK1 is the first bayesian network

% shown in figure 1 of the coursework.

%% A

a = brand(0.2);

%% B

if (a == 1), b = brand(0.25);

else b = brand(0.05);

end

%% C

if (a == 1), c = brand(0.1);

else c = brand(0.05);

end

15

%% D

if (b == 1)

if (c == 1), d = brand(0.75);

else d = brand(0.1);

end

else

if (c == 1), d = brand(0.5);

else d = brand(0.05);

end

end

%% E

if (c == 1), e = brand(0.6);

else e = brand(0.05);

end

%% assign to result

event = [a b c d e];

brand function This function makes a random binary decision returning 1
for true, and 0 for false. It returns decsions in the distribution given by the
probability of a true, specified by the parameter p.

function f = brand(p);

% BRAND makes a random decision

% It generates a random number and if that

% number is less than the probability p, it returns

% 1 otherwise it returns 0.

%% Return

if rand <= p, f = 1;

else f = 0;

end

16

4 Appendix 2: Empirical estimation source

calculateProbs function This function calculates the probabilities for P̃ (condV ars|givenV ars)for
the sample data generated in section 1. It uses recursion to go through
all of the different combinations values for the variables specified, and uses
calculateProb to calculate the probability of each.

function probs = calculateProbs(s1, condVars, givenVars,

conds, given, printLatex)

% CALCULATEPROBS calculates the vector of probabilities

% for all the combinations of conditions and givens.

% start

if (nargin == 3)

display(’\begin{tabular}{c}’);

probs = calculateProbs(s1, condVars, givenVars, [], [], 1);

display(’\end{tabular}’);

else

% recursing through combinations

if (nargin == 6)

% check if all conditions are specified

szConds = size(conds);

szGiven = size(given);

if szConds(1) == length(condVars)

if szGiven(1) == length(givenVars)

% base case

p = calculateProb(s1, conds, given);

probs = [p];

% display in latex

sconds = condsToStr(conds);

sgiven = condsToStr(given);

if (printLatex)

display(sprintf(

’ $\\tilde{P}(%s|%s) = %4.8f$\\\\’, sconds, sgiven, p));

end

else

% branch for current given

i = szGiven(1) + 1;

v = givenVars(i);

% when var is 1

given(i, 1:2) = [v 1];

17

probs = calculateProbs(s1, condVars, givenVars,

conds, given, printLatex);

% when var is 0

given(i, 1:2) = [v 0];

p2 = calculateProbs(s1, condVars, givenVars,

conds, given, printLatex);

sz = size(probs);

probs((sz(1)+1):(sz(1)*2), 1:sz(2)) = p2;

end

else

% branch for current cond

i = szConds(1) + 1;

v = condVars(i);

% when var is 1

conds(i, 1:2) = [v 1];

probs = calculateProbs(s1, condVars, givenVars,

conds, given, printLatex);

% when var is 0

conds(i, 1:2) = [v 0];

p2 = calculateProbs(s1, condVars, givenVars,

conds, given, printLatex);

sz = size(probs);

probs((sz(1)+1):(sz(1)*2), 1:sz(2)) = p2;

end

else

error(’incorrect arguments.’);

end

calculateProb function This function is used to calculate the probability
P̃ (X = x|Y = y) for the sample data. It iterates over the sample events
keeping a count Nx of the number of events for where X = x holds, and
a count Nx,y of the number of events where Y = y and X = x hold. The
probability is then simply given by Nx,y/Nx as P (x, y) = P (x, y)/P (x).

function result = calculateProb(sample, conds, given);

% CALCULATEPROB calculates the probability of the

% conditions conds occuring for all cases where given occurs.

%

% The parameters ’conds’ and ’given’ are matrices where each row

% is a condition. Each condition is a two column row vector where

% the left value cond(1) is the column index of the variable in

18

% the event, and the right value cond(2) is the value that it should

% take for the event to be true.

%

% e.g. calculateProb([1 1; 1 0; 1 0], [2 1], []) = 1/3;

% calculateProb([1 1; 1 0; 1 0], [2 1], [2 1]) = 1;

% calculateProb([1 1; 1 0; 1 0], [2 1], [1 1]) = 1;

sz = size(sample);

cz = size(conds);

gz = size(given);

tot = 0.0;

count = 0;

% for all events in sample

for i = 1:sz(1)

% check if all given conditions apply

alltrue = 1;

for ci = 1:gz(1)

% check current condition

c = given(ci,1:gz(2));

if sample(i, c(1)) ~= c(2)

alltrue = 0;

break;

end

end

% if given true

if alltrue == 1

% increment "out of" count

count = count + 1;

% check if all conditions apply

alltrue = 1;

for ci = 1:cz(1)

% check current condition

c = conds(ci, 1:cz(2));

if sample(i, c(1)) ~= c(2)

alltrue = 0;

break;

end

end

19

% if conditions hold add to

if alltrue == 1

tot = tot + 1;

end

end

end

% return probability of conds occuring given that

% given already has

result = tot / count;

20

5 Appendix 3: Analytical source code

computeProbs function This function computes the probabilities for the
variables specified as P (condV ars|givenV ars) by using computeProb to di-
rectly manipulate the joint distribution of model 1. It uses recursion to go
through all the combinations of values for the variables specified.

function probs = computeProbs(condVars, givenVars, conds, given)

% computeProbs computes the vector of probabilities

% for all the combinations of conditions and givens

% by directly manipulating the joint distribution.

% start

if (nargin == 2)

display(’\begin{tabular}{c}’);

probs = computeProbs(condVars, givenVars, [], []);

display(’\end{tabular}’);

else

% recursing through combinations

if (nargin == 4)

% check if all conditions are specified

szConds = size(conds);

szGiven = size(given);

if szConds(1) == length(condVars)

if szGiven(1) == length(givenVars)

% P(X|Y) = P(X,Y) / P(Y)

if szGiven(1) > 0

cs = conds;

for i = 1:szGiven(1)

cs(i + szConds(1), 1:2) = given(i, 1:2);

end

pXY = computeProb(cs);

pY = computeProb(given);

p = pXY ./ pY;

else

p = computeProb(conds);

end

probs = [p(1)];

% display in latex

sconds = condsToStr(conds);

sgiven = condsToStr(given);

21

display(sprintf(

’ $P(%s|%s) = %4.8f$\\\\’, sconds, sgiven, probs));

else

% branch for current given

i = szGiven(1) + 1;

v = givenVars(i);

% when var is 1

given(i, 1:2) = [v 1];

probs = computeProbs(condVars, givenVars, conds, given);

% when var is 0

given(i, 1:2) = [v 0];

p2 = computeProbs(condVars, givenVars, conds, given);

sz = size(probs);

probs((sz(1)+1):(sz(1)*2), 1:sz(2)) = p2;

end

else

% branch for current cond

i = szConds(1) + 1;

v = condVars(i);

% when var is 1

conds(i, 1:2) = [v 1];

probs = computeProbs(condVars, givenVars, conds, given);

% when var is 0

conds(i, 1:2) = [v 0];

p2 = computeProbs(condVars, givenVars, conds, given);

sz = size(probs);

probs((sz(1)+1):(sz(1)*2), 1:sz(2)) = p2;

end

else

error(’incorrect arguments.’);

end

end

computeProb function This function computes a probability by directly
manipulating the joint distribution for model 1. It takes a matrix of random
variables, and their corresponding values, and works out the probablity of
the disjunction of those variables by summing over the probabilities of all the
events where they hold. It uses probOfEvent to calculate the probability of
each given event.

function prob = computeProb(conds, currentVar)

22

% COMPUTEPROB computes the probability of all of

% the conditions occuring by directly manipulating

% the joint distribution. It works by summing over

% all values of unspecified variables.

if nargin == 1

% start

prob = computeProb(conds, 1);

else

% if still constructing events

sz = size(conds);

if currentVar ~= 6

% recursing through

sumOver = 1;

for i = 1:sz(1)

if conds(i, 1) == currentVar

sumOver = 0;

break;

end

end

if sumOver

% summing over both values of this variable

conds(sz(1)+1, 1:2) = [currentVar 1];

prob = computeProb(conds, currentVar+1);

conds(sz(1)+1, 1:2) = [currentVar 0];

prob = prob + computeProb(conds, currentVar+1);

else

% this variable appears in the interesection

prob = computeProb(conds, currentVar+1);

end

else

% compute the probability of this event

event = zeros(1,5);

for i = 1:sz(1)

event(1,conds(i,1)) = conds(i,2);

end

prob = probOfEvent(event);

end

end

23

probOfEvent function This function calculates the probability of the event
e occuring, given each of the 3 models. It works by multiplying the probabil-
ities of the variables P (A)P (B|A)P (C|A)P (D|B, C)P (E|C) for the values
in the event.

function probs = probOfEvent(e)

% PROBOFEVENT calculates the probability of

% the event e occuring, given that a bayesian model

% produced it for the 3 models.

probs = [0.0; 0.0; 0.0];

% MODEL 1

% A,B,C

if e(1)

p1 = 0.2;

p1 = p1 * ifv(e(2),0.25,0.75);

p1 = p1 * ifv(e(3),0.1,0.9);

else

p1 = 0.8;

p1 = p1 * ifv(e(2),0.05,0.95);

p1 = p1 * ifv(e(3),0.05,0.95);

end

% D

if e(2)

if e(3)

p1 = p1 * ifv(e(4),0.75,0.25);

else

p1 = p1 * ifv(e(4),0.1,0.9);

end

else

if e(3)

p1 = p1 * 0.5;

else

p1 = p1 * ifv(e(4),0.05,0.95);

end

end

% E

if e(3)

p1 = p1 * ifv(e(5),0.6,0.4);

else

24

p1 = p1 * ifv(e(5),0.05,0.95);

end

probs(1,1) = p1;

% MODEL 2

% A,B

p2 = ifv(e(1),0.2,0.8);

p2 = p2 * ifv(e(2),0.2,0.8);

% C

if e(1)

if e(2)

p2 = p2 * ifv(e(3),0.25,0.75);

else

p2 = p2 * ifv(e(3),0.05,0.95);

end

else

if e(2)

p2 = p2 * ifv(e(3),0.2,0.8);

else

p2 = p2 * ifv(e(3),0.05,0.95);

end

end

% D,E

if e(3)

p2 = p2 * ifv(e(4),0.6,0.4);

p2 = p2 * ifv(e(5),0.6,0.4);

else

p2 = p2 * ifv(e(4),0.1,0.9);

p2 = p2 * ifv(e(5),0.05,0.95);

end

probs(2,1) = p2;

% MODEL 3

% A

p3 = ifv(e(1),0.2,0.8);

% B,C

if e(1)

p3 = p3 * ifv(e(2),0.25,0.75);

if e(2)

p3 = p3 * ifv(e(3),0.25,0.75);

else

25

p3 = p3 * ifv(e(3),0.05,0.95);

end

else

p3 = p3 * ifv(e(2),0.05,0.95);

if e(2)

p3 = p3 * ifv(e(3),0.2,0.8);

else

p3 = p3 * ifv(e(3),0.05,0.95);

end

end

% D,E

if e(3)

p3 = p3 * ifv(e(5),0.6,0.4);

if e(2)

p3 = p3 * ifv(0.75,0.25);

else

p3 = p3 * 0.5;

end

else

p3 = p3 * ifv(e(5),0.05,0.95);

if e(2)

p3 = p3 * ifv(e(5),0.1,0.9);

else

p3 = p3 * ifv(e(5),0.05,0.95);

end

end

probs(3,1) = p3;

ifv function This is a simple shorthand ’if’ function for use in probOfEvent.

function v = ifv(t,wt,wf)

% IFV shorthand if statement

% when the condition t is true (or 1)

% returns the value wt, else it returns wf.

if t

v = wt;

else

v = wf;

end

26

6 Appendix 4: Likelihood calculation source

computePosteriorProbs function This function is used in question 3c to
calculate the posterior probabilities on the three models P (Mj|di) for j ∈
{1, 2, 3}, di ∈ SN . It does this by proceeding through the data, summing the
natural logarithms of the likelihood of each event. Then in order to calculate
the posterior probabilities it computes

hyp =
∑

j∈{1,2,3}
P (di|Mj)P (Mj) (2)

and then for each j ∈ 1, 2, 3 computes P (Mj|di) = P (di|Mj)P (Mj)/hyp.

function results = computePosteriorProbs(sample, step, limit)

% size of sample

sz = size(sample);

if nargin == 2

limit = sz(1);

end

% init results

results = [];

% prior probabilities of models

prior = [1/12; 5/12; 6/12];

% current log likelihoods

loglhood = [0; 0; 0];

% iterate through increasing sample sizes

for i = 1:limit

% compute prob of current event

p = probOfEvent(sample(i,1:sz(2)));

% compute product of likelihoods so far

loglhood = loglhood + log(p);

% if should take a reading

if mod(i,step) == 0

% get current likelihoods

lhoods = exp(loglhood);

27

% sum over hypotheses

hyp = sum(lhoods .* prior);

% compute posteriors

posts = (lhoods .* prior) ./ hyp;

% add to results

rsz = size(results);

results(rsz(1)+1, 1:3) = posts’;

end

end

computeLikelihoodRatios function This function computes the likelihood
ratios of the models by suming the natural logarithms of the probability of
each event. It returns log(P (di|Mj)/P (di|Mk)) because the function grows
exponentially and quickly exceeds double floating point representation ca-
pacity.

function ratios = computeLikelihoodRatios(sample,step)

% COMPUTELIKELIHOODRATIOS computes the likelyhood ratios

% each of the models M in {M1,M2,M3} for subsets of the

% sample in steps of ’step’ size and returns them as

% a matrix of rows where each row is like:

%

% row = [M1/M2 M1/M3 M2/M3];

ratios = [];

sz = size(sample);

t = [0; 0; 0];

for i = 1:sz(1)

% compute P of current event occuring

p = probOfEvent(sample(i,1:sz(2)));

% multiply likelihoods by totals

t = [t(1) + log(p(1));

t(2) + log(p(2));

t(3) + log(p(3))];

% if step add to results

28

if mod(i,step) == 0

rsz = size(ratios);

ratios(rsz(1)+1, 1:3) = [t(1) - t(2); t(1) - t(3); t(2) - t(3)];

end

end

29

