
PART III PROJECT VIVA

INVESTIGATION INTO ALTERNATIVE
PROGRAMMING ABSTRACTIONS
USING “CAUSAL SYSTEMS”

Tristan Aubrey-Jones (taj105@ecs.soton.ac.uk)

School of Electronics and Computer Science, University of Southampton

Overview

� Project Description
� Motivation

� Objective & Approach

� Language Design
� Language Model

� Key Features

� Translator Implementation

� Demonstration

� Conclusion

Project Description

� Motivation

� Architecture making a transition to parallel
� In 2004 Intel scrapped 2 single-core processor designs, in favor

of dual and quad-core designs.

� Programs are no-longer just single threads� Programs are no-longer just single threads

� In 2006 a group from Berkley predicted
� 1000’s of cores per chip “many-core” architecture

� Future programming models should be
� More “human-centric”

� Naturally parallel

� Independent of number of processors.

� Microsoft & Intel invest $20m parallel computing research

Project Description

� Objective (page 6)

� Need an implicitly parallel programming language

� To exploit new, and future hardware

� So programs can scale to fully use available processors

� That can easily run on distributed clusters, compute clouds

� That will simplify concurrency

� That are easy to learn and use

Project Description

� The Idea (page 7)

� Base parallelism on causality

� Objects reacting to events
by sending events to other

a1 a2 a3

Sequence

Iteration

objects

� All control structures can be
described as patterns of
message passing

� Programs are “mini-universes”:
systems of interacting objects
obeying rules governing their interaction.

a1

a2

a1

a3

a2

Selection

Language Design

� The Actor Model of Computation (page 9)
� Proposed by Hewitt 1973
� Actors (objects) respond to messages by

� Changing state
� Sending more messages

Creating more actors
Actor 1

Message

� Creating more actors

� Benefits
� Implicit concurrency
� More powerful than functional or data flow
� Object oriented

� Drawbacks
� Message passing inefficient
� Shared resources must be actors

Actor 2 Actor 3

Message
Create

Message

Language Design

� Approach
� Build on Actor Model

� Extend existing object oriented language (Java)

� Linear typing
Linear objects only referenced by 1 identifier at a time� Linear objects only referenced by 1 identifier at a time

� Use transference operator to move reference between
identifier, and actors

� Objects can be shared without synchronization constructs

� Objects passed by reference on shared memory machines

� Overloads existing message passing metaphor

� Minimal Language & Extended Language

Language Design: Minimal

� The Actor Class (page 11-14)
public aclass PhilosopherActor extends Actor implements ForkConsumer {

private TableActor table;

private Fork left, right;

private int state;

public PhilosopherActor() {

Inheritance and
Interfaces like
object classes

Fields store
state

public PhilosopherActor() {

state = THINKING;

}

react (ForkPair forks) {

...

}

public static class AmHungry {

...

}

void becomeHungry() {

...

}

}

object classes

Reactors define
message
handlers

Nested
message type

Internal
methods

Language Design: Minimal

� Reactor members (page 15)
public aclass PhilosopherActor extends Actor {

private TableActor table;

private Fork left, right;

private int state;

react (ForkPair forks) {

Defined for a
given message

type

react (ForkPair forks) {

if (state == HUNGRY) {

left <-- forks.left;

right <-- forks.right;

state = EATING;

eat();

}

table <-- new ForkPair(left, right);

state = THINKING;

}

}

“Transfer” linear
objects to fields

Change
state

Send
message

Create new linear
object (destructively
reading linear fields)

Language Design: Extended

� Expression Actors

public aclass Sorter returns int[] {

react (int[] array) {

...

return

Sorter sort = new Sorter();

int[] array = sort(new int[] {2, 3, 1});

Has a return
type

� Request/Response Pattern

� Like functional programming “closures”

return array;

}

}

All reactors
return values

Invoked
synchronously
like a function

Language Design: Extended

� Fork Blocks (page 17)

Sorter sort1 = new Sorter();

Sorter sort2 = new Sorter();

fork (left = sort1(left);

right = sort2(right);)

{

Concurrent
invocation

� Concurrent expression actor evaluation

� Common programming pattern

� Like asynchronous method call with call-back function

{

array = merge(left, right);

print(“done.”);

return array;

}

print(“sorting...”);

Continuation executes when
all invocations complete

Continues
immediately

Language Design: Extended

� Further extensions

fork (left = sort1(left);

right = sort2(right));

react-when (counter > 0) {

do();

When body
omitted, continues

sequentially

Conditional
reactors, execute while

do();

counter--;

}

message IntPair(int a, int b);

event ClickHander onClick;

reactors, execute while
condition is true.

Message object
shorthand

Actors can subscribe to
actor events

Translator Implementation

� Translate into Java (page 26-29)

� Tokenise using JFlex

� Parse using CUP

� Performs contextual analysis of AST� Performs contextual analysis of AST

� Translates extended constructs to minimal

� Translates minimal constructs to Java

� Emits Java code

*.ajava *.java *.class

Demonstration

� Dining Philosophers Problem (page 30)

� Linear Types

� Resource sharing using message passing

� Quicksort (page 31)� Quicksort (page 31)

� Recursive actor creation

� Fork construct

� Calculator (page 32)

� Event based programming, natural modularity

� Design programs more like machines, with components

Conclusion

� Hybrid: Actor Model & Linear Types � New model for
concurrency, with no need for synchronization constructs

� Easier to understand (just one metaphor: “transference”)

� Impossible for accidental interference as no shared
variablesvariables

� Better performance: pass by reference

� Implicit parallelism + Familiar object oriented notation

� Clear interfaces via reactor members, rather than
“receive” statements

� Scales to make use of available processors, and could
be ported to run on clusters

Conclusion

� Successfully:

� Created a new programming model

� Developed an “implicitly parallel” language

� Implemented a prototype compiler� Implemented a prototype compiler

� Written and run programs to evaluate its features

Further Work

� Different return types for each reactor in expression
actors

� Full semantic checking in translator

� Investigate “proximity”� Investigate “proximity”

� Code optimization & “auto-tuning”

� Deployment on open distributed systems

Questions?

The End

