PART Il PROJECT VIVA

INVESTIGATION INTO ALTERNATIVE
PROGRAMMING ABSTRACTIONS
USING “CAUSAL SYSTEMS”

Overview

Project Description
Motivation
Obijective & Approach

Language Design
Language Model
Key Features

Translator Implementation
Demonstration

Conclusion

Project Description

Motivation

Architecture making a transition to parallel

In 2004 Intel scrapped 2 single-core processor designs, in favor
of dual and quad-core designs.

Programs are no-longer just single threads

In 2006 a group from Berkley predicted
1000’s of cores per chip “many-core” architecture

Future programming models should be
More “human-centric”
Naturally parallel
Independent of number of processors.

Microsoft & Intel invest $20m parallel computing research

Project Description

Obijective (page 6)
Need an implicitly parallel programming language
To exploit new, and future hardware
So programs can scale to fully use available processors
That can easily run on distributed clusters, compute clouds
That will simplify concurrency

That are easy to learn and use

Project Description

The |dea (page 7) Sequence
Base parallelism on causality

Obijects reacting to events lteration
by sending events to other
objects

All control structures can be
described as patterns of
message passing

Selection

Programs are “mini-universes’:
systems of interacting objects
obeying rules governing their interaction.

Language Design

The Actor Model of Computation g 9
Proposed by Hewitt 1973

Actors (objects) respond to messages by
Changing state
Sending more messages
Creating more actors
Benefits
Implicit concurrency
More powerful than functional or data flow
Object oriented
Drawbacks
Message passing inefficient
Shared resources must be actors

ﬂMessage

Create

gessage

!

Message

Language Design

Approach
Build on Actor Model
Extend existing object oriented language (Java)

Linear typing
Linear objects only referenced by 1 identifier at a time

Use transference operator to move reference between
identifier, and actors

Obijects can be shared without synchronization constructs
Objects passed by reference on shared memory machines

Overloads existing message passing metaphor

Minimal Language & Extended Language

Language Design: Minimal
I

1 The Actor Class page 11.14

public aclass PhilosopherActor extends Actor implements ForkConsumer ({

private TableActor table; Inheritance and
private Fork left, right; Fields store

private int state; Interfaces like

state :
object classes

public PhilosopherActor ()
state = THINKING;
} Reactors define

message
handlers

react (ForkPair forks) {

}

public static class AmHungry {

Nested

} message type

void becomeHungry () {

} Internal

methods

Language Design: Minimal
I

1 Reactor members poge s

public aclass PhilosopherActor extends Actor { Defined for a

private TableActor table; givéen message
private Fork left, right; ’rype
private int state;

react (ForkPair forks) {

if (state == HUNGRY) { “Transfer” linear

left <-- forks.left; objects to fields
right <-- forks.right;

state = EATING;
eat ();

}

table <-- new ForkPair (left, right);
state = THS
} Create new linear

Send object (destructively

reading linear fields)

message

Language Design: Extended

[] EXPI‘GSSion Actors Has a return
type

public aclass Sorter returns int[] { Sorter sort = new Sorter();

react (int[] array) { int[] array = sort(nmew int[] {2, 3, 1});

return array;

Invoked

All reactors
synchronously

like a function

return values

1 Request /Response Pattern

1 Like functional programming “closures”

Language Design: Extended

]
I:I FOI’k BIOCkS (page 17)

Sorter sortl = new Sorter();
Sorter sort2 = new Sorter(); Concurrent
invocation
fork (left = sortl(left);
right = sort2(right);)
{

array = merge(left, right);
Continuation executes when
print (“done.”);

return array;

all invocations complete

}

print (“sorting...”); Continues
immediately

o1 Concurrent expression actor evaluation
1 Common programming pattern

o Like asynchronous method call with call-back function

Language Design: Extended
-~

1 Further extensions

When body

omitted, continues
fork (left = sortl(left);

right = sort2(right)); Sequen'“a”)’

react-when (counter > 0) { Conditional
do(); X
counter——; reactors, execute while
} condition is true.

message IntPair(int a, int b); M biect
essage objec

shorthand

event ClickHander onClick;

Actors can subscribe to

actor events

Translator Implementation
N

0 Translate into Java (age 2629
o1 Tokenise using JFlex
o1 Parse using CUP
o1 Performs contextual analysis of AST
o1 Translates extended constructs to minimal
=1 Translates minimal constructs to Java

=1 Emits Java code

*.ajava *.java *.class

Demonstration

Dining Philosophers Problem (g 39

Linear Types

Resource sharing using message passing
Quicksort oge s

Recursive actor creation

Fork construct
Calculator page s

Event based programming, natural modularity

Design programs more like machines, with components

Conclusion

Hybrid: Actor Model & Linear Types = New model for
concurrency, with no need for synchronization constructs

Easier to understand (just one metaphor: “transference”)

Impossible for accidental interference as no shared
variables

Better performance: pass by reference
Implicit parallelism + Familiar object oriented notation

Clear interfaces via reactor members, rather than
“receive” statements

Scales to make use of available processors, and could
be ported to run on clusters

Conclusion

Successfully:
Created a new programming model
Developed an “implicitly parallel” language
Implemented a prototype compiler

Written and run programs to evaluate its features

Further Work

Different return types for each reactor in expression
actors

Full semantic checking in translator
Investigate “proximity”
Code optimization & “auto-tuning”

Deployment on open distributed systems

Questions?

The End

